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ABSTRACT OF THE DISSERTATION 

Time Allocation Strategies for Entrepreneurial 
Operations Management 

by 

Onesun Steve Yoo 
Doctor of Philosophy in Management 

University of California, Los Angeles, 2010 

Professor Charles J. Corbett, Chair 

This dissertation investigates three key operational issues that entrepreneurial firms 

encounter during their growth phases: (1) project selection via learning, (2) process 

improvement, and (3) hiring. In particular, we focus on entrepreneurial firms in an 

organizational life cycle in which the innovative product or service of the firm have 

found a market niche (and therefore has passed the survival phase), and the primary 

goal is to maximize growth. In this high-growth phase, the increasing number of tasks 

requiring the entrepreneur's attention places an overwhelming demand on the time 

of the entrepreneurs, who is in charge of all the decision making. Motivated by the 

theory of constraints, we provide insights to the above three key problems in operations 

management by examining the entrepreneur's time allocation decisions. 

The first essay examines the project selection problem under uncertainty and learn-

ing leadtime, modeled by the discrete time bandit problems with stochastic response 

delays. It provides theoretical contribution to the extant restless bandit literature by 

proving that such class of bandit problems satisfies the indexability criterion as long as 

the delayed responses do not cross over. Thus, the problem is made practically solv-
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able (near optimally) by employing the resulting marginal productivity index (MPI)-

based heuristic. The result holds for infinite or finite horizon and holds for arbitrary 

delay lengths and infinite state spaces. We compute the resulting MPI's for the Beta-

Bernoulli Bayesian delayed learning model, formulate and compute a tractable upper 

bound, and numerically validate the MPI-policy's near optimal performance. 

The second essay investigates how entrepreneurial firms should invest time in pro-

cess improvement decisions during growth. For many entrepreneurial firms during the 

growth phase, their main bottleneck resource is the entrepreneur's time, rather than 

cash. We classify an entrepreneur's daily activities into four categories: fire-fighting 

(spending time to attend to random urgent disruptions), process improvement (invest-

ing time to reduce future fire-fighting frequency), revenue enhancement (investing time 

to enhance the revenue stream), and revenue generation (spending time to harvest rev-

enue at the prevailing rate), and analyze a stylized dynamic time allocation problem for 

maximizing long-term expected profits. We find that entrepreneurs should first invest 

time in process improvement until the process reliability reaches a certain threshold, 

then in revenue enhancement until the revenue rate reaches a certain threshold, and 

only then spend time generating revenue. Moreover, the greater the relative growth 

opportunities the entrepreneur foresee, more time should be spent upfront on process 

improvement to create a greater upfront safety-stock of time which can be used during 

growth. Furthermore, we find that entrepreneurs with higher prevailing revenue rate 

encounter the tradeoff between investing time in process improvement and investing 

time in revenue-related activities earlier than their counterparts with lower prevailing 

revenue rates, which leads them to settle at a lower process reliability and revenue 

rate than their counterparts. Thus, while they invest time optimally, the leader will 

ultimately lose their role as the leader, suggesting that it is not necessarily the compla-

xv 
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cency of the leader that causes the leader and follower reversal. 

The third essay presents a formalized model of the entrepreneurial production and 

provides insights into the entrepreneurial firms' hiring decision by examining how 

the inputs of time and money interact. Entrepreneurs' time and money are two key 

complementary inputs for any entrepreneurial firm's production, and the lack of either 

resource constrains the firm's growth. We demonstrate that the shadow value of time 

always becomes greater than the shadow value of money, making time the key bottle-

neck resource. Viewing hiring as an opportunity for trading off money against time, 

we characterize the optimal timing of the hiring decisions faced by entrepreneurial 

firms. We establish that there is a unique cash level threshold above which it is optimal 

to hire. We find that this hiring threshold is non-monotonic in the hiring setup time, 

due to the tradeoff between the need to preserve the growth momentum and the need 

to hire before the shadow value of time becomes too large. On the other hand, en-

trepreneurs should delay hiring if the setup cost increases, suggesting the importance 

of differentiating setup cost and setup time in the hiring decisions. Finally, we find that 

the optimal timing of hiring maximizes (rather than minimizes) the post-hire shadow 

value gap between time and money. 

xvi 
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CHAPTER I 

Indexability of Bandit Problems with Response Delays 

1 Introduction 

1.1 Motivation 

Dynamic allocation of activity under uncertainty is a fundamental decision problem 

faced by decision makers everyday. In each time period, unable to engage in (pull) 

all of the existing projects (arms), the decision maker must carefully choose a subset 

of the projects to engage in. Once the projects are chosen, corresponding events are 

set in motion, outcomes are observed, based on which the states of each projects are 

updated. The objective of the decision maker is to utilize the given information about 

the projects and choose the subset of projects each period that would maximize the 

long term horizon discounted rewards. 

This widely studied dynamic decision model, a variant of a problem better known 

as the multiarmed bandit problem, however, ignores an important dimension of re-

sponse delays. In practice, a project's outcome is not observed immediately, but only 

after a delay (whose length may be random), during which the decision maker contin-

ues to make decisions. Incorporating delays provide a powerful modeling framework, 

as it can be generalized to aid decision making in many application areas. We illustrate 

a few examples. 

1 
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• Clinical Trials (Whittle 1988). In this setting, the arms correspond to medical 
treatments. The state of an arm represents one's state of knowledge on the effec-
tiveness of the corresponding treatment. Pulling an arm corresponds to treating 
a patient with the corresponding medical treatment. One's state of knowledge 
on the effectiveness of the treatment will be updated only after observing the 
patient's treatment outcome. 

• Dynamic Assortment (Caro and Gallien 2007). In this setting, the set of arms 
represent the unproduced assortment of fashion items. The state of each project 
represents one's knowledge on how popular the item will be. The knowledge 
of each item's popularity will be refined only after observing the sales, which is 
possible only after incurring production and distribution leadtime. 

• Corporate Strategy (Bernardo and Chowdhry 2002). In this setting, the arms 
correspond to regions where franchises can be opened. The state of the arms 
represents the revenue expectations of each region prior to opening a franchise. 
Once a franchise is opened, the actual sales is observed only after a delay during 
which the franchise reaches out to the customers. During the delay, the head-
quarters may decide to open more franchises in the region. 

• Management of Employees. In this setting, the arms represent employees, and 
the state of the arms represents the manager's belief about the skill level of each 
employee. After delegating assignments to different employees, the manager 
can update his belief on each employee's skill levels based on the outputs, which 
occurs only after a delay. 

Despite their practical relevance, the bandit problems with response delays have 

received only moderate attention in the literature (see §1.2 for a review). One reason 

is because the problem becomes an intractable restless bandit problem (Whittle 1988), 

as the state of an arm which is not pulled (passive) may still change when a backlogged 

decision is implemented. 

While they are difficult to solve optimally, many restless bandit problems can 

nonetheless be solved near optimally using the marginal productivity index (MPI)-

2 
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based heuristic (Nino-Mora 2006), provided that the problem satisfies the indexability 

criterion (Whittle 1988). Hence, indexability is a desirable property as it makes the 

restless bandit problem practically solvable by employing the MPI-based heuristic. 

In this paper, we prove that the discrete time bandit problems with stationary ran-

dom delays satisfy the indexability criterion as long as the delayed responses do not 

crossover. After an overview of the related literatures in §1.2, we introduce the mul-

tiarmed bandit problem with response delay and describe the basic properties in §2. 

In §3, we present the indexability result, and in §4, we compute the indices for the 

multiarmed bandit with delay for the canonical Beta-Bernoulli learning model and test 

its performance and compare it to those of other closed-form index heuristics. We 

conclude in §5. 

1.2 Literature Review 

The literature on restless bandit indexation was created when Whittle (1988) first gen-

eralized the classic bandit framework (Gittins 1979) by allowing the passive arms to 

change states, and termed it the restless bandit problem. The restless bandit problems 

are computationally intractable to solve optimally, and hence the primary research 

concerns the development of heuristic policies that can be shown to be near optimal. 

Whittle forms a Lagrangian dual problem and defines a priority index as the Lagrange 

multiplier associated with an arm which makes the decision maker indifferent between 

pulling and not pulling the arm. He shows that this priority index generalizes the Git-

tins index and devises a priority-index policy which pulls the arms with the highest 

index values. He further conjectures the asymptotic optimality of the priority-index 

policy, which Weber and Weiss (1990) later largely validate and Weiss (1992) shows 

a special case for which the conjecture holds. However, Whittle states that for the 

3 
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index to be well-defined, the restless bandit problem must first satisfy the indexability 

criterion. That is, the Lagrange multiplier that equates the pulling and non-pulling 

actions must be unique for every possible state of a given arm. He shows that indexi-

bility cannot be taken for granted by providing counterexamples. Moreover, verifying 

indexibility itself is non-trivial and until recently sufficient conditions satisfied by a 

broad subclass of restless bandits were unknown. 

Nino-Mora pioneers the field of restless bandit indexation to theoretically provide 

sufficient conditions for indexability. In particular, Nino-Mora (2006) generalizes the 

Whittle's priority index by defining the marginal productivity index (MPI) in terms of 

the more general and economically intuitive reward/work measure, and shows that the 

MPI's interpretation can be applied in an identical manner to many other classic index 

policies that were shown to be optimal, including the celebrated Gittins index. Using 

the MPI, he identifies classes of restless bandit problems that satisfy the sufficient 

conditions, mostly under the assumption of a finite state space (see Nino-Mora 2007 

and references therein). Our work contributes to the literature by expanding the known 

class of indexable restless bandit problems. 

The problem of bandits with response delays has received only a moderate atten-

tion in the literature. Eick (1988) examines the clinical trials setting where a patient's 

lifetime is modelled as a geometric random variable, and provides the first proof of in-

dexability for a delayed response bandit when the discount factor 8 is than 1 /2. Wang 

and Bickis (2003) extend this result to arbitrary lifetime distributions under certain reg-

ularity conditions, but those conditions reduce to 8 < 1 / 2 in the discrete time case. In 

contrast, our result shows indexability for the more applicable discount factors 8 < 1. 

Hardwick et al. (2006) consider the response delay bandit model where patients arrive 

according to a Poisson process with the treatment time having exponential response 

4 
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delays. They identify heuristics that perform well under the objective of minimizing 

patient loss. However, the heuristics are randomized rules which are not grounded in 

indexability theory. More recently, Nino-Mora (2007) examines a finite queue with 

a one period response delay and shows its indexability. However, the model lacks 

generality in that the state space must be finite and the delay is limited to one period, 

whereas our model allows for infinite state space and arbitrary delay lengths, which 

can be stationary random as long as the delayed responses do not crossover. We re-

fer the interested reader to Altman and Stidham (1995) and Ehsan and Liu (2004) for 

other queueing applications with delayed information. Finally, Caro and Galien (2007) 

introduces a closed-form index, generalizes it to incorporate response delay, and show 

that the resulting index policy has near-optimal performance. Our work suggests that 

their method performs well because their closed-form index is a good approximation 

of the MPI. 

2 Problem Description 

2.1 Model Basics 

The decision problem is defined in discrete time, where each period is indexed by t, 

representing t steps to go, and the rewards are discounted by 5 < 1 each period. The 

response delay i is also a discrete quantity. In each time period, with S available arms 

but only able to pull N (N < S), the decision maker must carefully assess the state of 

each arm 5. Once the arms are pulled, the outcomes are observed ^-period later, at 

which point the state of the arm changes. The objective of the decision maker is to pull 

the N arms each period to maximize the long term discounted rewards. 

Let jc,y e denote the state of arm s and the vector x eSis denote the state of all S 

5 
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arms. Let Rs(xs) denote the reward of arm 5 which depends on its state. For simplicity, 

we assume that the reward functions Rs are uniformly bounded, but this assumption 

can be relaxed (for instance, see Condition B in p. 17 of Gittins 1989 or the Bayesian 

formulation given in Burnetas and Katehakis 2003). The decision on arm s each period 

is represented by us £ {0,1}, where a value of us = 1 corresponds to a (Pull) decision, 

while a value of us = 0 corresponds to a (NotPull) decision. In each period, it is not 

possible to pull more than N arms, i.e. us < N. The vector u e {0,1 }lS denote 

the decision on all S arms, and each of the vectors (v1, represent the decisions 

that had been made in previous periods, with v1 being the oldest decision that will be 

implemented this period and the V being the most recent decision. 

Each arm s follows an independent Markovian process. If v] = 1, the function 

fs(xs,vl ,ws) denotes the state that the arm s transitions to from state JC$ given the 

decision v] and the random component w^x^), which depends on state xv; and if 

v] = 0, fs(xs,vl
s, ws) = xs signifying that the state of the arm remains unchanged. Let-

ting the vector w(x) £ Sls represent a vector of random variables ws(xs), the vector 

f(x, v1, w) e represents state that all the arms transitions to from state x given the 

decision vector v1 and the random component w. 

Let J* (x, v1 , . . . , v^) denote the maximum discounted reward with t steps to go given 

the state of the arms x and the decisions of the previous periods v 1 , . . . , vf Then, the 

multiarmed bandit problem with delay can be expressed as the following dynamic 

program, 

(BD): J ^ x y . - . y ) = max u {Lf = 1 /? J ( j : J K 1 +8E w j ;_ 1 ( / (x ,v 1 ,w) J y 2 , . . . y ,u)} 

s.t. u e { 0 , l } 5 , Zs=ius <N 

for t > £, and for t <£, 

6 
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j ; ( x , v 1 , . . . y ) = E f = i ^ ( ^ ) v i + 5 E w j ; _ 1 ( / ( x , v 1 , w ) , v 2 , . . . y ) } ! Jo(;) = 0. 

Because a passive arm's state can change when the delayed {Pull) decision is im-

plemented (i.e. vj = 1), the problem is a restless bandit problem (Whittle 1988), which 

is intractable. A known heuristic which can solve the restless bandit problems near op-

timally is the MPI-index policy, but this policy is well-defined only if the problem 

satisfies the indexability criteria. We explain this next. 

2.2 Indexability Criterion and the Equivalence Relation 

Whittle (1988) forms the Lagrangian dual of the restless bandit problem, where the 

dual variable X has the interpretation of subsidy for not pulling the arm, and defines 

the priority index as the value of X that makes the decision indifferent between pulling 

and not pulling the arm. If the index X is to be meaningful however, it must induce a 

consistent ordering of the arms, in that any arm which is not pulled under a subsidy X 

will also be not pulled under a higher subsidy X' > X. An equivalent statement in terms 

of cost is that if any arm is pulled under a cost X, it must also be pulled under a lower 

cost X' < X. The formal definition of indexability for a single independent arm is the 

following: 

Definition (Whittle 1988). Let DS(X) be the set of values of xs for which project s 

would be rested under a X-subsidy policy. Then the project is indexable if DS(X) in-

creases monotonically from 0 to Ts as X increases from —°° to where Ys is the full 

state space for project s. 

A restless bandit problems is indexable if each one of its arms is indexable. The 

7 
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proof given in the next section shows that a single-arm bandit with response delay 

satisfies Whittle's definition. Therefore, the multiarmed bandit problem with response 

delays (BD) is indexable. 

Before showing the main indexibility result, note that there are potentially four 

possible formulations of our problem, due to the four different ways of accounting for 

the Lagrange multiplier X in the rewards. First, from the definition, X can either have a 

subsidy or cost interpretation. Moreover, it may be accounted for when the pull/not pull 

decision is made (before the delay) or when the decision gets implemented (after the 

delay). Accounting for X before the delay has been more prevalent in the literature. For 

instance, Wang and Bickis (2003) and Caro and Gallien (2007) consider the subsidy 

and cost interpretations respectively under that framework. In our proof of indexibility 

we found it easier to account for X after the delay. Regardless of this choice, our first 

proposition shows that the accounting method does not affect the indexability result. 

Furthermore, because the order of the indices do not change, the priority index policy 

whose indices are derived from four different accounting methods would be identical. 

Proposition 1.1 Suppose one formulation is indexable. Then the other three formula-

tions are also indexable. Moreover, the ranking of the indices does not change from 

one formulation to the other. 

Proof. See Appendix A. 

In the next section, without a loss of generality, we examine the formulation where 

X represents a subsidy for not pulling and rewards (including the subsidy) are ac-

counted when the decisions are implemented after the delay. 

8 
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3 Structural Results 

In this section, we establish the indexability of multiarmed bandit problem with (i) con-

stant delay, and then (ii) with stationary random delays in which the delayed responses 

do not cross over. We do so by showing that the single-arm bandit with response delay 

is indexable. 

We point out that the underlying bandit problem is not restless, or in other words 

the state of arm that is not pulled does not change t periods later. Only after the 

incorporation of the response delay does the problem become 'restless.' We exploit 

this underlying non-restless structure of the problem in the proof by matching sample 

paths. 

Let (z) denote the maximum profit-to-go function of an arm s with a subsidy X 

for a state z with t periods to go. To show that arm s satisfies Whittle's indexibility def-

inition, for each state z a unique index X must exist such that the expected discounted 

profit from pulling is equal to that from not pulling. More formally, if we denote the 

maximum profit-to-go function of the arm after it is pulled and after it is not pulled 

respectively as 

J^s(z){Pull\ and J^s(z){NotPull\ 

we would want to show that there exists a unique X such that (z)<yPull> = j}s (z) (NotPull>. 

We can achieve this if we show that A/^(z) EE J^s(z)(Pull} - j}s(z){NotPull] is a decreas-

ing function of X for every state z, and then take the limit when t —> 
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3.1 Indexability of Constant Delay 

Consider a single-arm s and a constant response delay of £ periods. The maximum 

profit-to-go function at time t and state xs with delayed orders (vj,..., vf) is given by 

7^(x s ,v] , . . . ,vf) = Rs(xs)vl+X(l-vl) 

+ 8 ma \{EWSJ}l hs(fs(xs,vl,ws),v^,...,ve
s, 1 ) , 

The expectation is taken with respect to the random variable ws, which has an arbitrary 

distribution that is dependent on the current state xs. When necessary, we will write 

ws(xs) to make the parameter dependence explicit. 

The difference in value at time t between the (Pull) and (NotPull) decisions has 

the following expression: 

AJ^s(xs,vl,...,ve
s) = Rs(xs)vl+X(l-vl) + SEwjlls(fs(xsys,ws),vl...,ve

s,l) 

+ ^ ( 1 —v]) +dEWsJ^_i s(f s(x s ,vl,W s),V^, ..., vf ,0)} 

= &Ews{j}-1,,{fs(xs, v] , ws) , V2, ..., vf, 1) 

- •Jt -1,* ( f s (xs, VJ, ws ), •v,2,..., •vf, 0) }.. 

Letting zs = (x5, v| , . . . , vf) denote the augmented state, we can rewrite the value func-

tion as, 

£ = J h M ^ + [^UsiZsT = JtL^Z,)^"™) + [Ajlhs(Zs)} + , 

where [r]+ = max{0, r}, [r]_ = max{0, —r}. 

We now prove the monotonicity result. The key step of the proof uses a coupling 

argument to show the desired inequality. For notational simplicity, we will omit the 

subscript s in the proof. 

10 
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Proposition 1.2 For all augmented state z, A j f ( z ) is decreasing in X. 

A, X 

Proof. Using induction, we show that for any ?ii > X2, A C ( z ) < A J ? 2 ( z ) for all z. 

The proof is for £ > 2. For £ = 1 the notation would have to be slightly different but 

the argument is exactly the same. 

Base Case: t = £+l. 

Here, we make the (Pull) / (NotPull) decision only once, and observe the expected 

outcome in the remaining £ periods. We have, 

Ajf+l(x,v\...,ve) =dEWl{jf(f(xy,w),v2,...y,l)-jf(f(x,v\w),v\...y,0)} 

= 5eEWlEW2. ..EWl{jl(foi(x,v,w), 1) -Jl(f°e(x,v,w);0)} 

= &{E„R(f°i(x,v,w))-X}, 

where the vector v represents all the delayed decisions (v1,..., the vector w rep-

resents the series of dependent random variables (wi,W2, ....W(), and foi(x,v,w) is a 

short-hand notation for / ( / • • • / ( / ( / ( x ,v 1 ,w i ) , v 2 ,w2) ,v 3 ,w3) , . . . ) , v t ^ ) . Each w,'s 

distribution depends on the sample path of the states, and the expression E^ represents 

an ^-iterated expectation framework. This expression is clearly decreasing in X, Vz. 

Induction Step: t > £ + 1. 

Assume that Vz = (JC,V1, . . . ,ve) and X\ > X2, A / ^ z ) < We will show that 

Vz = (JC.V1, . . . , / ) and h > X2, AJ^(z) < A f f 2 ( z ) . 

11 
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We write out the expression for A ( z ) and AJ^l(z) as follows: 

- j f l 1 (fix, v1, wj) , v 2 , 0 ) } , 

Aj^(X,v\...y) = bEw[{j^{f(Xy,w\)y,...y,\) 

The difference between the first and second expressions gives us the following: 

DIFF = £j}x (x, v1,..., ve) - M}2 (x, v1,... ) 

After rewriting each row's expression J = max{ j(Pul1), j (NotPul l ) | jn t e r m s Qf j — 

j (Pul l ) + [ j (NotPull) __j{Pull )^+ a n d J = J{NotPull) + ^j(NotPull) _ j { P u i i ) y - a n d rearranging 

the terms, we have, 

DIFF = t ( /(*, v1, Wi), v2,..., / , 1)(NotPul1) 

- j ^ ( f ( x y , w l ) y , . . . y , o ) ^ } 

- d E w , { j ^ ( f ( x y , w \ ) y , . . . y i)<"«™> 

- y j f t ( /(x, v1, v^) , v 2 0 ) { P u l l ) } 

+ 8 E w l [ A j ^ l ( f ( X y , w l ) y , . . . y A ) ] + 

- b E ^ A j ^ i / i x y ^ y , . . . , / ^ ) } -

+bE<[Aj^l(f(xy,w'l)y,...y,o)}--

Each of the last two rows is less than or equal to 0 via the induction assumption, 
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and we will denote the sum of the last two rows as C < 0. After evaluating out each 

term in the first two rows, e.g., 

+ 5 £ W 2 J ^ 2 ( / ( / ( ^ V 1 , W 1 ) , V 2 , W 2 ) , V 3 , . . . , V ^ 1 , 0 ) , 

we arrive at the following expression: 

DIFF = 8£Wl{/?(/(ac,v1,wi))v2 + A , i ( l - v 2 ) 

+5£V V 27^2(/( /(x,v1 ,w1) ,v2 ,M;2),v3 , . . . ,v f , l ,0)} 

- 5 E W l {R(f(x, v1, wi))v2 + Xi (1 - v2) 

+dEW2J^2(f(f(x,vl,Wl),v\w2),v3,...y,0,l)} 

- 6 E w , {R(f(x, v1, Wx))v2 + X2 (1 - v2) . 

{R(f(x,v1, w\))v2 + X2{\ - v2) 

+DEW^2(F(F(XY,W[),V2,W'2)Y,...Y,O,I)}+C 

< 52
JEWlJEW2{y f

Xl2(/(/(x,v1 ,w1),v2 ,w2),v3 , . . . ,v£ ,l ,0) 

- j ^ 2 ( f ( f ( x y , w l ) y , w 2 ) , v \ . . . y , o , i ) } 

+5 2£ ,
w / EW,2 {^I2(F(F(X, V\W\)YY2)Y,...Y,O,I) 

- ^ 2 ( / ( / ( * , v 1 y 1 ) J v 2 y 2 ) , v 3 , . . . y , i , o ) } . 

We now introduce the coupling argument. Consider the bandit with subsidy A,i 

starting from two different states. The first, which we refer to as System A with time 

t — 2 to go from state f ( f ( x , v l , w\), v2, w2), v3,..., vl, 1,0) and follows the optimal pol-

icy. The second, which we refer to as System B, starts from state 

13 
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f ( f ( x , v1, wi), v2, w2), v3,..., v^, 0,1), but it implements the same decision as System A 

in the first £ stages, and after that, it follows its own optimal policy. Let n* denote the 

optimal policy of System A (which is followed by System B for the first £ periods). 

Note that both System A and System B start from the same (non-augmented) state 

/ ( / ( jc ,v 1 ,wi) ,v 2 ,w2) and experience the same number of state transitions within the 

next £ periods. Moreover, these transitions have exactly the same Markovian dynam-

ics, so by defining the two processes on a common probability space, we can assume 

that the actual transitions are the same. 

Let Gnl (z) represent the value of being in state z with time t — 2 to go and follow-

ing the policy 71*. Then we have, 

and 

The first equality and the second inequality follow because 71* is optimal for System A 

but suboptimal for System B. The same coupling argument can be used for the bandit 

with subsidy A.2, only that System A would start in state (...,0,1) and System B would 

start in (...,1,0). Denoting 71** as the optimal policy of System A, we have, 

and 

Bv subtracting these smaller values of G — * * and , theDIFF can be bounded above 1-2 1-2 

as follows: 
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DIFF < 6 2 E W { E W 2 { G ^ u ( / ( / ( * , v1, W 1) , v2, w2), v 3 , . . . , 1 , 0 ) (DIFF. 1) 

-Glijf(f(xy,Wl),v2,W2),v3,...y,oA)} 

+5 2£w ;^{G^ 2 ( / ( / (X,V 1 ,W /
1 ) ,V 2 ,vv /

2 ) ,V 3 , . . . ,V^,0,1) (DIFF. 2) 

-Gll2(f(f(x,v\w\),v2y2),v3,...y,l,0)} 

We now evaluate the expressions (DIFF.l) and (DIFF.2). 

(DIFF.l): 

d2EwlEW2Gli2(f(f(xy,wl)y,w2)y,...y,i,o) 

= 8lEWxEW2...EwtGjj (.f°l(x, v, w), 1,0,u\,..., m|_2) 

= 8iEWlEW2...EW({R(f°i{x,v,w)) 

+&Ewm (f{f°e(x, v, w), 1, ), 0, ,..., w|_2, m|_!)} 

= &E„{R(f°i(x,v,w)) 

+SEW(+i (ki + 87^e_2{f(f°e(x, v, w), 1, wi+1),u\,...,u}_j,u*e))}, 
where u\ means the optimal x-th action for System A. Similarly, 

82EwlEW2Giijf(f(xy,wl)y,w2)y,...y,o,i) 

= 8eEWlEW2...EW(G^I (f°e(x,v,w),0,\,u\,...,u*e_2) 

= 6eEWl EW2.. .Ewt {A,i + SgJs ] (f°l(x, v, w), 1, u\,..., u\_2 , j )} 

= 5eE„{ll+d(R(f°e(x,v,w)) 

+SEwt+2J^ e_2(f(f°e (x, V, w), 1, we+2), u\,...,«!_!, u*e))}. 

Both W£+i and W£+2 have dependence on the same state foi(x, v, w) and hence have 
% 

the same distribution. Therefore, the last terms from the expressions, S£w<,+1/?_^_2( ) 

and &EWe+2J^e_2(-) cancel and we have, 

(DIFF.l) = 8*(1 -b)E„R(foi(x,v,w)) - S £ ( l - 8 ) X i . 

Following the same sequence of reasoning, we get the expression for (DIFF.2) pro-
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vided below: 

(DIFF.2) = 5£(1 - 8)A,2 - 8*(1 - S)E^R(fe(x,v,w[)). 

Summing the expressions (DIFF.l) and (DIFF. 2), 

DIFF < {DIFF.l) + (DIFF.2) 

= 5 f ( l - 8 ) X 2 - 8 £ ( l - 8 ) ? i i 

+8^(1 —5)EwR(f°e(x,v,w)) — 5e(l —&)E^R(f°e(x,v,y/)). 

The initial wi and w\ share the same distribution because it is dependent on the original 

state of the arm x at time t. Also, since v are identical, the expression involving the 

expectations cancel and we have that DIFF is bounded above by 

DIFF < 8*(1-8)A, 2 -8*(1-8)A, i 

= (X,2 — — 8) < 0, V8 < 1. 

• 
We now present the result that multiarmed bandit problems with constant response 

delay are indexable. 

Theorem 1.1 The multiarmed bandit problem with constant response delay £ is index-

able. 

Proof. First, we have A j } { z ) decreasing in X, Vt,z, and it is easy to see that A7r°(z) > 0, 

and AJf°(z) < 0. Thus, to show that a well-defined X exists such that Ajf-(z) = 0, it 

suffices to show that A J } ( z ) is continuous in X. We do this by induction. 

When t = we have Aj}(x,v\... ,ve) = Ew(R(x) - X), and j}{x,v\... ,ve) = 

max{£w(/?(*)), A,}, which are clearly continuous in X for all z. Suppose that x iz) 
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and (z) are continuous in X for all z. Then, 

and 

are clearly continuous in X. Moreover, as R(x) is uniformly bounded (by problem 

assumption), J^(z) converges as t —• °o. Hence, there is a well-defined X such that 

AJx(z) =0. • 

3.2 Indexability of Stationary Random Delay 

In many practical settings, delays may be random. We show that the indexability result 

can be generalized to bandit problems with stationary random delays, in which the 

delayed responses do not crossover (i.e., the stochastic delay £ G {m,m+ 1} for some 

fixed integer m). If, however, the randomness in the delay lengths permits the delayed 

responses to crossover (i.e., £ € {m, ...m + K},K> 1), then the bandit problem is no 

longer indexable. 

Theorem 1.2 The bandit with stationary random delay is indexable if the delayed re-

sponses do not crossover. However, indexability need not hold if the delayed responses 

are allowed to crossover. 

Proof. See Appendix B. 

This result is analogous to the inventory systems with stochastic leadtimes. In 

particular, if the random delay process does not have order crossovers, the base-stock 

policy is shown to be optimal (e.g. Kaplan 1970, Muharremoglu and Yang 2008). 
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However, Robinson et al. (2001) show that the base-stock policy is no longer optimal 

when the order are allowed to crossover. 

4 Numerical Work 

In this section, we examine the Beta-Bernoulli learning model where the prior distri-

bution of the success probability p of the Bernoulli random variable is characterized 

by a Beta distribution with parameters (a, (3). The state of an arm, corresponding to 

this parameter (a , (3), is updated in a Bayesian manner: to ( a + 1,(3) after observing 

a success or to (a , (3+ 1) after observing a failure. In other words, a bandit in state 

(a, (3) is statistically equivalent to one that began with its success probability p having 

an a priori distribution uniform on [0,1], and which has now shown a — 1 successes 

and (3—1 failures in a + (3 pulls. 

We compute the indices for the multiarmed bandit model with constant delay I. 

Then, using the indices we examine the performance of the resulting MPI policy 

against an upperbound, and compare it to those of other existing closed-form indices. 

4.1 Index Computation 

Compared to the classical multiarmed bandit problem (with no delay), the indices from 

Theorems 1 and 2 do not have an equivalent representation as an optimal stopping-

time problem. Therefore, an approach to compute the indices based on this property, 

which Gittins (1989) calls the direct approach, is not available. Instead, we adopt the 

calibration approach which uses dynamic programming value iteration (see Gittins 

1989 for further discussion of both approaches). 
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The indices for the bandit problem without delay using the Beta-Bernoulli learning 

model have been computed and tabulated in Gittins (1989). We extend this table by 

adding the indices for delays £ <G {1,2,3,4,5} and discount factors 

5 e {0.5,0.6,0.7,0.8,0.9,0.95,0.99}, and make it available online for public use (see 

the authors' website). The indices have been computed using the subsidy/implementation 

framework, and by Proposition 1, the index values under other reward accounting 

methods are the same up to a constant factor, which does not affect the actions sug-

gested by the MPI-index policy. 

4.2 Numerical Simulation 

In this section, we examine the performance of the MPI policy for the Beta-Bernoulli 

learning model (DeGroot 1970) with constant delays. We compute a performance 

upperbound by solving a relaxed multiarmed bandit problem in which the constraint 

that does not allow more than N arms pulled per period is only required to hold on 

average (see the Appendix C for the upperbound formulation). We use this to gauge the 

suboptimality of the MPI policy. We then compare its performance with the myopic 

policy (MYO) that maximizes the single-period reward (see for instance, Aviv and 

Pazgal 2002), and the closed-form index policies developed by: Caro and Gallien 

(2007, denoted CG), Brezzi and Lai (2002, BL), and Ginebra and Clayton (1995, GC), 

in which the respective index formulas (shown in Table 1) have been modified as in 

Caro and Gallien (2007) to account for delays.1 

The simulation and the upper bound optimization codes are written in Matlab, and 

are available from the authors upon request. Using a discount rate of 8 = 0.95, we 

'The index-specific coefficients of the CG and GC formulas where obtained through least-squares 
using a small sample of exact MPI values. 
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Table 1.1: Closed-form index formulas. Here B denotes the Beta 

prior with parameters (a, (3) and a delayed-adjusted variance equal to 

V[B\ — a (3( (a + P) 2 (a + |3+ £ vT + 1 ) 1 , where vT is the T-th delayed ac-
1=1 

tion. Accordingly, Y denotes a Bernoulli random variable with success probability 

a ( a + P ) - 1 . For index-specific coefficients and functions, refer to the original articles. 

Name Closed-form Index Index-specific 
Myopic (MYO) E[B] 

Caro-Gallien (CG) 

Brezzi-Lai (BL) 

Ginebra-Clayton (GC) E[B]+kSiey/V[B] 

run a series of simulations for 5 delay periods £ <G {1,2,3,4,5} for T periods such that 

& < 10 - 6 to approximate infinite horizon. We let our initial prior to be the uni-

form distribution, corresponding to the Beta distribution with parameter (a, (3) = (1,1), 

as it best represents the initial state of knowledge. We did an extensive simulation study 

and here we show the results for a few representative instances. 

The simulation results where the decision maker pulls 4 arms out of a total of 32 

arms, i.e. (S,N) = (32,4), are shown in Table 2. The first observation is that MPI 

index policy is near optimal since the suboptimality gap is very small. In general it 

was less than 4% in all the simulations we ran, and in most cases it was actually less 

than 2%. The gap has a slight tendency to increase with the length of the delay i . This 

could suggest that the MPI policy becomes slightly worse. However, it could also be 

that the upperbound deteriorates with longer delays. 

We also note that all the delay-incorporated closed-form index policies perform 
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Table 1.2: Suboptimality gap for the MPI policy and the closed-form benchmark poli-

cies. (q ,p) = (1,1), (S,N) = (32,4), 5 = 0.95. 

i MYO (%) CG (%) BL (%) GC (%) MPI (%) UpperBnd 

1 7.96 0.74 0.69 0.53 0.51 60.30 

2 8.80 1.43 1.66 1.31 1.53 59.65 

3 8.98 2.26 2.72 2.71 2.15 59.01 

4 7.23 2.61 2.81 2.80 2.82 58.38 

5 6.34 3.56 3.51 3.66 3.63 57.80 

very close to the MPI policy and that the differences are not statistically significant. 

We attribute the performance similarity to the fact that all the values of the modified 

closed-form indices provide good approximations of the MPIs. We do however find 

that the myopic policy performs significantly worse than all other policies. This is to 

be expected because the myopic policy ignores the delayed actions as well as the future 

benefits from learning. 

Computing a large table of necessary MPI's often requires high level of compu-

tational complexity. Our finding suggests that, in such cases, one should adjust the 

existing closed-form indices and use the policy as a substitute for the MPI policy and 

attain comparable results. 

Furthermore, we find that as the number of projects S and the number of allow-

able pulls N increase while maintaining a constant ratio N/S, the suboptimality gap 

of the MPI policy approaches zero. The suboptimality gaps for (S,N) = (32,4), 

(S,N) = (160,20), and (S,N) = (320,40) are shown in Table 3. Whittle (1988) ini-

tially conjectured that the MPI index policy is asymptotically optimal. This was largely 

validated by Weber and Weiss (1990) for finite-state restless bandits. Our results sup-
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port the conjecture for infinite-state bandits with response delay. 

Table 1.3: Asymptotic suboptimality gap. (a, (3) = (1 ,1) ,8 = 0.95. 

(S,N): (32,4) (S,N): (160, 20) (S,N): (320,40) 

t MYO (%) MPI (%) MYO (%) MPI (%) MYO (%) MPI (%) 

1 7.96 0.51 8.65 0.64 8.78 0.07 

2 8.80 1.53 7.64 0.65 7.72 0.28 

3 8.98 2.15 4.75 0.47 4.62 0.45 

4 7.23 2.82 3.97 0.87 3.74 0.68 

5 6.34 3.63 4.75 1.60 4.77 1.17 

5 Conclusion 

In this paper, we prove the indexability of the multiarmed bandit problem with re-

sponse delay, where the delays are of arbitrary length and are allowed to be stationary 

random as long as the delayed responses do no crossover. We show that, under station-

arity assumption, the problem is not indexable if the order is allowed to crossover. The 

MPI policy performs near optimally, and the closed-form index policies when adjusted 

for delay represent good estimations of the MPI and perform well. 

Further refinements of these policies are worth studying. For example, Kaplan 

(1970) formulates a stochastic lead time process in which the delays for each period 

are identically distributed but statistically dependent random variables so that orders 

do not crossover. It would be worthwhile to examine whether our results hold for 

nonstationary random delays. Another interesting variation is to make the pulls irre-

vocable. That is, once an arm stops being pulled, it can never be pulled again. This 

22 



www.manaraa.com

can be a desirable property from a practical standpoint and the results available for the 

classical bandit problem show a high performance that might extend to the case with 

response delays (see Farias and Madan 2008). 
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APPENDICES 

A. Equivalence Relation 

There are potentially four different ways of accounting for the Lagrange multiplier X, 

which are given below and are summarized in the following table. 

Lagrange Multiplier X Accounted: 

When Decision Made 

When Decision Implemented 

Table 1.4: Four different representations. 

J t ( x y , . . . y ) = /^(^v1 +max{8£w^_ 1( / ( j : ,v 1 ,H') ,v 2 , . . . y , 1), 

J?(x,vl,...y)= R(x)v1 +X(1 —vl) + ma.x{bEwjf-_{(f(x,vl,w),v2, 1), 

dEwJ^_l(f(x,v\w),v2,...y,0)}. 

x,v\...y)= R(Xy+ max{-X + 5 EWH}_ x (f{x, v1, w), v2,..., 1), 

bEwH^(f(x,vl, w ) , v 2 , . . . y , 0 ) } . 

H}{x,v\...y)= (R(x)-X)vl+max{bEwH}Ll(f(x,v\w),v2,...y,l), 

bEwH^_j ( f ( x , v1, w), v2,..., v^,0)}. 

Proof of Proposition 1. Through induction on t it can be shown that A j } ( z ) = 

AH^(z) = Ajf^iz) = Mif^iz) for every (augmented) state z, where the operator A 

denotes the difference between the expected profits under the Pull and NotPull deci-

sions. Clearly, if the difference is decreasing in X for any of the formulations, then 

As Subsidy for As Cost for 

Not Pulling Pulling 

Jx 
Jt H} 

Jx 
Jt Hi 
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it is also decreasing for the other formulations. The Proposition follows from this 

observation. • 

B. Indexability of Stationary Random Delay without Order Crossover 

We first establish the following monotonicity result using the coupling argument as 

was done previously for Proposition 2. 

Proposition B.l . For all state z, AJ^(z) is monotonically decreasing in A, for stationary 

random delay £ if the orders do not cross over, i.e., £ G {m, m + 1}. 

Proof. We show that if £ G {m, m + 1} then the problem is indexable. 

X X 

We show that for any X[ > X2, AJt
 1 (z) < A J t

2 ( z ) for all z, via induction. For sim-

plicity of illustration, we will assume that m — 0, or in other words, that the delay is 

uncertain between no delay and a delay of period 1. The structure of the proof remains 

identical for m > 0. 

Base Case: t = 1 

In the final decision period t = 1, there will be zero delay with probability po, and a 

delay of one period with probability p\. We have, 

7 j L (x , l )= R(x) + max{p0EWlR(f(x,l,wi))+piO,p0X + piO}, . 

Jl(x,0) = X + max{p0R(x) + piO,p0X + piO}, 

J^(x,<d) = 0 + max{/?o^(*) + p\0,poX + p\0}, and 
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A ^ ( x , l ) = p0{EWlR(f(x,l,Wl))-X}, 

AJl(x,0) = A/f(x,0) = p 0 {R(x) -X}. 

All are clearly decreasing in X. 

Induction Step: 

Suppose that Vz, Xt > X2, AJ^ t (z ) < A J ^ ( z ) . We will show that Vz, X\ > X2, 

A ^ ( z ) < A ^ 2 ( z ) . 

Again, there will be no delay with probability po, and a delay of one period with 

probability p\. We have, 

J}{x, 1) = R(x) + max{Po(EWlR(f(x, l ,wi) ) + dEW2J^_l(f{f(x, l , W l ) , 1, w2),0)) 

poiX + SE^J^ifixA,™!),®)) 

+Pl(8EW]jll(f(x,l,wl),0))}, 

J}{x,0) = X + max{Po(R(x) + ^w, J}li(/(*, l,wi),0)) 1)), 

poiX + dJ^ix,®)) + p\(5/^ (x,0))}, 

J^(x, 0) = 0 + max{p 0 (^W + &EWiJ^(f{x, 1, wi), 0)) + px ( 5 / ^ (x, 1)), 

M ^ + S ^ M ^ + M S / ^ M ) ) } , and 

AJ}{x, 1) = P0{EWlR(f(x, l,Wl))-X) + poidE^J^ififix, 1,W!), 1,w2),0) 

- b E ^ J ^ i f i x , l ,wi) ,0)) 

AJ^(x,0) = MXx,(^) = po(R(x)-X) + p0(^EWlJll{f(x^,wl),(^)-6J^l(x,i^)), 

+Pl(bJll(x,l)-SJll(x,0)). 

For simplicity, we will examine the indexability for state z = (x,0), but the identi-

cal argument holds for other states. We have, 
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DIFF EE A ( x , 0) - Al}2 (x, 0) 

= P0 X { (X2 - Xi) + 6EW1j ( f ( x , 1, W!), 0) - ! (x, 0) 

- 5 E w [ , ( /(x, 1, h/J ), 0) + 57^ , (x, 0)} 

+pi x {57^, (x, 1) — 87^ , (x,0) - 5 7 ^ j (x, 1) + 6J f
xi1(x,0)}. 

After rewriting the expression and rearranging the terms, we have 

DIFF = po x {(A,2 — + 5£'VVl7^1(/(x, l jWi),©)^'" '3"^ — 87^1(x,0)(p" / /) 

j)2_, (/(x, 1, w;), 0) + 57^ , (x. 0) } 

+Pi x {rfhix,\)(NotPM) 

! (x, 1) (No,Pull) + 5 1 ^ 0 ) (PW//) } 

+A, X { 5 ^ , [A7^ 1( / (x, l Jw 1) ,0)]+ - bEw, [A7^, ( /(x, 1, w[),<b)}+ 

-ZlM^x^r+SiAJ^ix,&)}-}} 

+pi x {5[A7^ 1 (x , l ) ]+-5[A7^ 1 (x ,0)]+ 

-5[A7^ 1 (x ,0) ] - + 8[A7^1(x,0)]-}. 

Eliminating the bottom two expressions, which are both non-positive by the induc-

tion assumption, we have 

27 



www.manaraa.com

DIFF < p0x + 

- 5 EW[ , ( / (*, 1, w;), 0) { N M l " > + 57^ ,(x„0) } 

+Pl X ( 5 7 ^ , (x, 

-87* i ! (x, 1) ( N o t P u l^ + S7*i, (x, 0) (Pul1)} 

= P o x { ( X 2 - ^ i ) 

+P0 X {SE^/^ i + 5 7 ^ 2 ( / ( x , 1 ^ 0 , 0 ) ) 

-5(R(x) + 5 EWlJ^2(f(x, 1, wi), 0)) 

-dEw[(X2 + 5J^2(f(x,l,w\),<d)) 

+5 (R(x) + dEw,J^2(f(x,l,w\),(d)) 

+ P l x {b2EWl ( / (x, 1, wi), 0) - 5 2 7 ^ 2 (x, 1) 

- 6 2 Z v 7 i 2 ( / ( x , l ,w; ) ,0 ) + 5 2 7^ 2 (x , 1)}}} 

+ P l x {/?0 x {5(/?(x) + X{ + 5 E W l 7 ^ 2 ( / (x, 1, W l ) , 0)) 

- 8(Xi + /?(*) + £ W 1 7^ 2 ( / (x, 1, wi), 0)) 

-5(R(x) + X2 + 6EW, 7 ^ 2 ( / (x, 1, wi), 0)) 

+8(^2 + R(x) + Ew[ 7 ^ 2 ( / (x, 1, S ) , 0)) 

+ P l x (5(fl(x) + 8£Wi7^2(/(JC ) 1,WI),0)) -8(A,I + 1)) 

-5(/?(x) + 6£ w ,7^ 2 ( / (X , 1 X 0 , 0 ) ) + 5(^2 + 57^2(X, 1))>>> 

= po(X2-Xi) + d(Xi -X2)(pl-p\) 

+ P l { & E W [ J ^ 2 ( / ( x , 1, W!), 0) - 5 2 7^ 2 (x , 1) 

- 5 2 ^ 7 ^ 2 ( / ( x , 1,w/
1),0) + 827^2(X, 1)}. 

We now introduce the coupling argument. Consider the bandit with subsidy Ai 

starting from two different states. The first, which we refer to System A, starts from 

the augmented state ( /(x, l ,wi ) ,0 ) at time t — 2. The second, which we refer to as 

System B, starts from state (x, 1), but implements the same decisions as System A 

in the first stage, and after that, it follows its own optimal policy. Let 71* denote the 
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optimal policy of System A. 

Let G^.1 (z) represent the value of being in state z for A-i at time t — 2 and following 
t—2 

the policy n*. Then we have, 

7 ^ 2 ( / ( X , 1 , W 1 ) , 0 ) = G ^ 2 ( / ( X , 1 , W 1 ) , 0 ) , and 1) > GX
nlJx, 1). 

The same coupling argument can be used for the bandit with subsidy only 

that System A would start in state (x, 1) and System B would start in ( f ( x , l , W j ) , 0 ) . 

Denoting K** as the optimal policy of System A, we have 

= and J^2(f(x, 1, w[),0) > G ^ C / f r i y , ) , 0 ) . 

By subtracting these smaller values of G^l and Gtl, , the right hand side of the 

inequality, and therefore DIFF, is bounded above by 

DIFF < PO(A.2 - ) + 5(A.i - A.z) (pg - p f ) 

+p i{5 2 £ W l G^_ 2 ( / (x , l ,w i ) ,0 ) -d2GX
%iJx,l) (DIFF.l) 

+52G^2(X, 1) — S2Ew, GX
NL2(f(x, 1. W\ ),0)}. (DIFF.2) 

We now elaborate the expressions (DIFF.l) and (DIFF.2). 

(DIFF.l) =pl{52EWl{po(Xl+R(f(x,l,wi))u* + Xl(l-u*) 

+8£W2 G^3 (/(/(*, 1, W!), u*, w2), 0)) 

+Pi(Xi+ 5 EWl GllJf(x,l,Wl),u*))} 

-52 {p0 (R (x) + Ewx R{f(x, 1, wi) K + Xi (1 - u*) 

+5EW2 G*J_3 ( / ( / (* , 1, wi), u \ w2), 0)) 

+pi (R(x) + EWl G^u ( f ( x , 1, wi), u*))} } 

Following the same argument, we have 
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(DIFF.2) =pi{5 2 ( /? (x) -? i2)} . 

Thus, after summing the expressions, we have 

DIFF = P o f a - X ^ + H h ^ i p l - P D + P i & i h - ^ ) 

= (h - h)(po(l - 8po) + 8pi(pi - 5)) < 0. 

Notice that if po — 1 & p\ = 0 or po = 0 & p\ — 1, the above inequality reduces to, 

respectively, 

( X , 2 - A . i ) ( 1 - 8 ) < 0 , and ( X 2 - k i ) 8 ( l - 8 ) < 0 , 

which is consistent with the result of Proposition 2. • 

Proposition B.2. If the delayed responses are allowed to crossover, then AJ}{z) is 

not necessarily monotonically decreasing. 

Proof. We provide an example of a range of A,'s in which A j } { z ) is increasing when 

the delayed responses are allowed to crossover. In particular, consider e {0,2}, 

z = (JC, 0,0) at time t = 4, and = 0. We have, 

j\{x, 0,<D)=X + max{SJ$(x, 0,1), 0,0)} 

AJ%(x,0,0) = 5{J$(x,0,1) - J$(x,0,0)}. 

We elaborate the necessary (•)'s and J i i^ ' s , 
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X, 0,1) = ma x{R(x) + 5 Ewj\{f(x, 1, w), 1 ,0) , X + 8j£(x, 1 ,0)}, 

73 (x, 0,0) = max{/?(x) + 5£vv7j-(/(jc,l,w),O,0),X + 87j(x,O,0)}, 

5 EwJ$(f(x, 1, w), 1,0) = 8EwR(f(x,l,w)) 

+ 5 2EWEW ma x{R(f(f(x, 1, w), 1, w')),X}, 

572 (x, 1,0) = ^ W + ^ ^ m a x ^ / ^ . ^ w ) ) , ^ } , 

dEwJ%(f(x,l,w),0,<b) = 8X + &Ewmax{R(f(x,l,w)),X}, 

67£(x,O,0) = 5^ + 52max{/?(x),X}. 
We consider the following independent binary random process as shown in the figure. 

t=4 t=3 t=2 t=1 t=0 

Figure 1.1: Independent binary random process. 

Let R(x) = x, and for simplicity let us take x = 1, and let = 1.67, and X2 = 1.55, 

with 5 = 0.9. Substituting these values into the expression above, we have 

7j1 (x,0,1) = 4.60, 73
1 (x,0,O) = 4.53, 73

2(x,0,1) = 4.39, 73
X'2(x,0,O) = 4.34, 

giving us, 
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A74>(jc,O,0) =5{7j - 1 (x ,0 , l ) -73 1 (x ,0 ,O)} = 0.9(0.067) = 0.0603 

A/^2 (x, 0,0) = 5{7j 2 (x, 0,1) — /g2 (x, 0,0)} =0.9(0.055) =0.0495. 
A, A, 

Or in other words, although A,i > X2, we have AJ4 ' (x.0. 0) > A/4
2(x,O,0), which im-

plies that A/4 (x, 0,0) is increasing in this interval. • 

Proof of Theorem 2. The Theorem is clear by following the outline of the proof 

of Theorem 1, and using the results of Proposition B.l and B.2. • 

C. Upperbound Formulation 

So far, we have focused on formulating a heuristic because the dynamic programming 

formulation that defines the optimal policy is intractable. In this section, we formulate 

a tractable Lagrangian upperbound of the problem by decoupling the dynamic pro-

gram into S independent arms. The upperbound enables us to provide a suboptimality 

guarantee of the resulting index policy. 

Proposition C . l . Define the following function: 

v1, = NX 

+ m a x u { L f = 1 ( / ? J ( x J ) - ^ ) v ] + 5 E w L ^ 1 ( / ( x , v 1 , w ) , v 2 , . . . , v ^ u ) } 

s.t. u e { 0 , l } s , 

for t > £, and for t < 

L ^ ( x , v 1 , . . . y ) = NX + l1
s
s=l(Rs(xs)-X)vl+bE„Lll(f(xy,w),v2,...y)} 

LX
0(-) = 0, 
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where the X represents the cost when the arm is actually pulled, and 

L;(x,v\...y) = minxL}(x,x\...y). 

Then, 

j?(xy,...y)<L;(xy,...y)<L}(xy,...y). 

Proof. We prove by induction. For t < I, it is clear that the following holds given that 

l f = J v1 <N, \/t<Z. 

J\{*y) = l L i Rs{x,)v] 

<NX + Zs
s=l(Rs(xs)-X)vl 

= L}(x,v1), 

and 

J*(x,y\...y) = l f = 1 / ? i ( ^ ) v ] + 5E w / ;_ 1 ( / (x ,v 1 ,w) ,v 2 , . . . , v f ) 

< NX + Y^=i(Rs(xs) +SE w L^_ 1 ( / (x ,v 1 ,w) ,v 2 , ...,v') 

=L}(xy,...y). 

For t > £ + 1, suppose J*_{ < H}_ j . Then, 

+ 5 E w / ; _ 1 ( / ( x , v 1 , w ) , v 2 , . . . y , u ) } 

< max u e { 0 1 } S . L s = i Hj<n + E f = 1 (Rs(xs) - X)vl
s 

+5E w y;_ 1 ( / (x ,v 1 ,w) ,v 2 , . . . , v^ ,u)} 

< max u e { 0 1 } , .L5= i U s<N {NX + l?s=l{Rs{xs) - X)vl
s 

+8EwL^_j ( / (x , v1, w), v2, . . . y , u) ^ 

+5E w Lj-_ 1 ( / (x ,v 1 ,w) ,v 2 , . . . y ,u ) 

= l K x . V 1 , . . . , ^ ) . 
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The first inequality follows because £ f= i vj < N, and the second inequality holds be-

cause of the induction assumption. The final inequality is because it is an optimization 

problem defined over a larger set. • 

We next show that the above expression for v1 , . . . , v^) can be formulated more 

simply in terms of single-arm problems. Such similar decomposition has been shown 

previously without delay (see Caro and Gallien 2007, Bertsimas and Mersereau 2007). 

Proposition C.2. 
t s 

i ) F o r t < £ , L ^ ( x , v 1 , . . . y ) = m ^ 5 T - 1 + £L?; i(x s ,v] ,v s
2 , . . . ,vO, where 

X— 1 5=1 

(R(xs)-X)vl+dEwLlls(f(x,v\w),v2,...y). 

ii) For t > £ + 1, 

T=1 S=L 

where 

Lls(xsys,...ys)= ma x{(R(xs)-X)vl+dEwLlhs(f(xy,w)y,...y,l), 
(R(xs)-i)vi+sEwL}_ls(f(xy,w)y,...y,o)}. 

Proof. We prove by induction. 

i) For delay of £, t = £ +1 is where we'll make the final decision. Hence, L^(x, v1 , . . . , v^) 

can be considered a constant where the decisions (v1,..., v^) gets carried out. We first 

evaluate the quantity for t < £. £$(•) = 0. First by Proposition C.l , we have: 

4 ( x , v1) =NX + L?=1 (*,(*,) - X,)vJ + 5£w{Lj( . )} 

Then, if we assume the expression holds for we have 
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z | ( x , v \ . . , v < ) = N X + l , s
s = l ( R s ( x s ) - X ) v l + 8 E w { L f _ l ( f ( x y , v V ) , v 2 ) } 

= NX + lt
s
s=l(Rs(xs)-X)vl 

+8EV/{NXY?^ S"1-1 + jfs= x Ll_l s(f(xs,vl,ws),v2, ...ys)} 

+ZEWsL}_l/f(xs,vl,ws),vl...,vt
s)} 

ii) Now suppose t >£+1, and the expression holds for t — 1. Then, again from Propo-

sition C.l , we have the following expression: 

z | ( x , v ' , v 2 , . . . V J =NX + max u {Ef = 1 (Rs(xs) - X)vj 

+8EwL^_1(f(x,vl,w),v2, ...,v',u)} 

= NX + maxu{Ef= i (RSM ~ + 8EW{NXH~=\ 51"1 

+ . ( / ( i . v ^ . v ? , . . . , ^ ^ ) } } 

= NXLUl S 1- 1 + I f = i max u {(^ (x , ) - X)v* 

+ 6 E „ L l y f ( x s , v l w ) , v 2 , . . . y ) } 

=nxz u 5 x _ i + Ef = 1 Li(Xsy y , . . . y ) . 
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CHAPTER II 

Optimal Time Allocation Policy for Entrepreneurial 

Process Improvement 

1 Introduction 

Consider the following vignette (based on a blend of several true stories) of a time-

constrained entrepreneur seeking revenue growth: 

Susan runs a small marketing agency that produces advertising materials to sup-
port her clients' needs. Her current list of services appeals to a small but loyal 
client base, from whom she can always generate extra revenue by working harder 
and bidding for more orders. Susan wants to grow her firm by offering higher 
margin services to a more high-end client base, but doing so would require her 
to spend time to learn about these new services and how to market them. At the 
same time, she feels that she spends too much of her time fighting fires, such as 
customer complaints or urgent questions from employees. She wants to reduce 
the frequency of all such disruptions, but that would also require her to spend 
time. Unable to do everything at once, Susan feels that there is not enough time 
in a day, and that her lack of time is what prevents her from growing her business. 

In this paper, we develop a time-management framework for entrepreneurial pro-

cess improvement. We classify an entrepreneur's daily activities into four categories, 

characterized by their impact on the current and future revenue rate and available time 

(defined more precisely later): revenue generation (earning money from existing busi-
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ness), revenue enhancement (developing new business, e.g. through product devel-

opment or market research), fire-fighting (dealing with various crises), and process 

improvement (reducing the frequency of such crises). We outline a stylized time allo-

cation model and present the optimal policy which prescribes how entrepreneurs like 

Susan should prioritize between the four activity categories. 

Time management, due to its general appeal, has long been a major theme in the 

popular press. In "The Effective Executive," Drucker (1967) asserts that time is the 

most important resource that any executive can manage. Mackenzie (1997) warns that 

managers often wrongly associate "being busy" with "being productive," and identifies 

common "time traps" that they should avoid (e.g. uninvited visitors, phone interrup-

tions, unnecessary paperwork or meetings). Covey (1989) classifies activities as a 

function of their urgency and importance, and claims that more time should be spent 

on activities that are important but not necessarily urgent. The central theme of all 

self-help books is that when one recognizes time as a resource and manages it well, 

more goals can often be achieved in less time. 

While time management is important for all executives, two factors make it particu-

larly relevant for entrepreneurs. First, an entrepreneur's time is, almost without excep-

tion, the bottleneck resource in their organization (e.g. Evans et al. 2004, Flamholtz 

1986, Perlow 1999); this is also confirmed by hundreds of for-profit and social en-

trepreneurs participating in various programs at the major university in which the au-

thors conduct research, as well as by the series of case studies the authors are involved 

in. In particular, although cash is sometimes thought of as being the most constrained 

resource (e.g. Archibald et al. (2002)), most entrepreneurs agree that, if they had more 

time, they could raise more capital from investors or donors, or earn more cash by sell-

ing more services to more customers. From that perspective, how entrepreneurs decide 
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to use their scarce time is perhaps the most important resource allocation decision they 

make. Second, in contrast to most managers, entrepreneurs have (almost) complete 

control over how they use their time. In short, entrepreneurs are more able to manage 

their own time than most others, and how they use their time has a more direct effect 

on the firm's performance than is the case in larger firms. 

We find that entrepreneurs should first invest time in process improvement until 

the process reliability reaches a certain threshold, then in revenue enhancement until 

the revenue rate reaches a certain threshold, and only then spend time generating rev-

enue. In particular, entrepreneurs with lower initial revenue rates should invest more 

time in process improvement and in revenue enhancement, ultimately earning revenue 

at a higher rate than if they were endowed with a higher initial revenue rate. Our 

model formally links time with money and introduces a framework for evaluating the 

opportunity cost of an entrepreneur's time. 

The rest of the paper is structured as follows. In §2, we review the related literature. 

In §3, we discuss the entrepreneurial setting and motivate our modeling assumptions. 

In §4, we present the dynamic programming (DP) framework for time allocation. We 

characterize the entrepreneur's optimal time allocation policy and discuss the oppor-

tunity cost of time in §5, and in §6 we extend the model to accommodate stochastic 

process deterioration and uncertainty in revenue enhancement and provide numerical 

illustrations of the optimal policy. In §7, we highlight the performance difference 

between the optimal policy and two commonly employed (well-intentioned) time allo-

cation behaviors within the context of the model, and illustrate why our intuition can 

be misleading. We conclude in §8. All proofs appear in the online appendix. 
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2 Literature Review 

Our work contributes to the operations management (OM) literature on entrepreneurial 

operations management and on process improvement, and to the economics literature 

on time allocation and on intertemporal decision making. 

The challenges faced by entrepreneurs have received relatively little attention from 

the operations management community. Sommer and Loch (2004) offers strategic in-

sights for coping with risk and complexity for companies that must adapt and innovate 

in dynamic environments. On a more operational level, Archibald et al. (2002), as-

suming that start-up companies maximize long-term survival probability rather than 

profit, compare inventory decisions between an established firm and a start-up firm. 

Under a similar assumption, Swinney et al. (2005) examine the effect of competition 

on startup's capacity decisions. Babich and Sobel (2004) link start-up companies' 

operational decisions with financial decisions and examine the optimal timing for an 

initial public offering (IPO), whereas Joglekar and Levesque (2009) examine how to 

allocate capital between improving product quality and marketing efforts to maximize 

firm valuation. In contrast to these studies, which characterize entrepreneurs by their 

cash constraint, we consider entrepreneurs' time as the main bottleneck resource of 

entrepreneurial companies, as is the case when they are in their growth phase. 

Furthermore, our model presents a framework for process improvement. Fine and 

Porteus (1989) study the economics of gradual monetary investments in process im-

provement to save on costs in the future using a Markov decision process model, and 

Bernstein and Kok (2009) studies a similar problem in an assembly network setting. 

Using similar models, Fine (1988), Li and Rajagopalan (1998) and Dada and Marcel-

lus (1994) study the impact of learning, which reduces the probability of future process 
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deterioration, and Gong et al. (1997) study the tradeoff between a permanent fix and 

a partial fix. We contribute to the process improvement literature by focusing on in-

vesting time rather than money for improving operations and by considering revenue 

enhancement as well as process improvement. 

In the economics literature, studies of time allocation abound, usually focusing on 

the decision where an agent seeks to optimally balance their time between work and 

leisure (e.g. Becker 1965, Baucells and Sarin 2007). In contrast, the time management 

decision problem where an agent allocates her time to various work-related tasks to 

maximize a work-related objective, has received less attention. Radner and Rothschild 

(1975) examine the properties of three intuitive heuristics for allocating effort for a 

manager who must simultaneously handle multiple activities. Seshadri and Shapira 

(2001) build on this framework by examining the feasibility of achieving a given long-

term goal under various heuristics managers commonly employ. While these models 

give insights on how to manage time in order to meet an objective, they assume that 

the available time is exogenously given. Our work contributes to the time allocation 

literature by explicitly recognizing that the time available in the future can be increased 

through process improvement activities today. 

The traditional approach to intertemporal trade-offs regarding money is the dis-

counted utility (DU) framework initially proposed by Samuelson (1937). Despite the 

inconsistencies inherent in the DU framework as a model for intertemporal decision 

making (Fredrick et al. 2002), it nonetheless remains the norm for intertemporal fi-

nancial valuation (Copeland et al. 2005). This is due to the existence of an inter-

est rate, r > 0, set by market forces, which effectively makes one dollar tomorrow 

worth -j^: = 8 dollar today. Many psychologists however have found that people in-

herently perceive time differently from money (e.g. Soman 2001, LeClerc et al. 1995, 
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Devoe and Pfeffer 2007, Okada and Hoch 2004), and in particular, Zauberman and 

Lynch (2005) show that people discount future time more heavily than future money. 

Nonetheless, no formal framework describing intertemporal trade-offs regarding time 

exists. We contribute to the discounting literature by presenting one possible normative 

framework for how people should discount time. 

3 Entrepreneurial Operations 

Entrepreneurship1 is a vital component of the economy, employing over half of all pri-

vate sector employees, and having generated 64 percent of new jobs annually over the 

last 15 years (U.S. Census Bureau 2009). Entrepreneurial activities fuel innovations 

in products and services covering a wide range of industries (Shane and Ulrich 2004), 

including technology startups, creative marketing, nonprofit organizations, petroleum 

distribution, legal services, and senior care. In this section, we present and discuss 

our assumptions, that (i) entrepreneurs proactively create demand, (ii) entrepreneurs 

are responsible for all functions within the firm but cannot easily delegate, and (iii) 

entrepreneurs' daily activities can be classified into four categories. 

3.1 Endogenous Demand Creation 

Entrepreneurs are often credited as being the agents in society who endogenously cre-

ate demand. For example, Schumpeter (1934) argues that while changes in consumer 

demand can sometimes drive innovation, the reverse case where innovation creates 

consumer demand is more often true. Hayek (1945) takes the view that economic de-

'We refer to entrepreneurial firms as the small businesses defined by the U.S. Small Business Ad-
ministration (SBA), i.e., independent business having fewer than 500 employees. This paper focuses 
more on entrepreneurial, i.e., growth-oriented firms than on established small businesses. 
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velopment is due to the "constant small changes" caused by entrepreneurs who use 

their "knowledge of particular circumstances of time and place" to arbitrage disjoint 

markets. Similarly, Kirzner (1997) asserts that entrepreneurs generate profit opportuni-

ties by discovering earlier errors and argues that "whereas each neoclassical decision-

maker operates in a world of given price and output data, the entrepreneur operates to 

change price/output data." 

We mirror the proactive nature of the entrepreneur's demand generating process 

by assuming that entrepreneurs are capable of generating extra demand for existing 

products and services or discovering new revenue opportunities when they allocate 

time to those activities. 

3.2 Lack of Delegation Capacity 

Much of an entrepreneur's activity relies on tacit knowledge, or "sticky informa-

tion" (von Hippel 1994), which makes many entrepreneurial tasks difficult to dele-

gate. Moreover, the organizational structure of an entrepreneurial firm, as opposed to 

professionally managed established firms, requires the entrepreneur to be involved in 

all functions. Flamholtz (1986) observes that "an entrepreneurial firm has an infor-

mal organizational structure with overlapping and undefined responsibilities . . . a CEO 

who knows everything that is going on and pays attention to the smallest details . . . [is] 

beneficial and necessary for the company." 

Although we recognize the importance team structures have on innovation quality 

(Girotra et al. 2009), we will abstract away from the structural level of an organization 

and accordingly model the entrepreneur as the sole processor of the firm, unable to 

delegate material authorities to others, making her time allocation critical to the firm's 
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Short-term Long-term 

Revenue-focused RG RE 

Process-focused FF PI 

Table II. 1: Activity Classification 

profitability. 

3.3 Classification of Activities 

We formally classify the activities that the entrepreneur can engage in at any point in 

time into the following four categories, which are further illustrated in Table II. 1 based 

on their revenue/process dimension and short-term/long-term impact. 

(RG): "Revenue Generation," 

or spending time to earn revenue at the prevailing rate, 

(RE): "Revenue Enhancement," 

or investing time to increase the revenue rate, 

(FF): "Fire Fighting," 

or spending time to attend to random urgent disruptions, and 

(PI): "Process Improvement," 

or investing time to increase the process reliability. 

Revenue generation refers to short-term activities that generate extra income for 

this period but do not permanently improve the revenue stream (rate). Revenue en-

hancement refers to growth activities such as creating new products or businesses to 

permanently improve the entrepreneurs' revenue rate. Fire fighting (Radner and Roth-
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schild 1975) refers to urgent activities that must be attended to immediately but do not 

contribute to current or future revenue rate or available time (e.g. short term fixes). 

Finally, process improvement (Fine and Porteus 1989) refers to the activities of a pre-

ventive maintenance nature that reduce the need for fire-fighting and hence save time in 

the future. In practice, activities do sometimes fall in multiple categories, but treating 

this classification as being strict helps to bring out our main insights more strongly. 

4 Model 

In this section, we introduce the basic model and the DP framework. We then present 

the notions of time discounting and return on time invested (ROTI), and discuss our 

assumptions. 

4.1 Dynamic Programming Framework 

We characterize the entrepreneur's time allocation decision using an infinite horizon 

discounted DP model. Each time period represents a short time interval (e.g. one day 

or a half day), representing the duration of a typical activity. We assume the length 

of an entrepreneurial growth phase to be several months to a few years, under which 

approximating the entrepreneur's time horizon as infinite is a mild assumption. 

Our model focuses on entrepreneurial firms in their growth phase, during which 

cash is not the key constraint. In particular, our model applies to two classes of en-

trepreneurs. The first class of entrepreneurs are well-funded by donors or investors 

who provide them with the capital necessary for growth as well as a constant wage B 

each period. The second class of entrepreneurs are those who can access the capital 

necessary for growth by leveraging their established track records and reputations (e.g. 
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good relationship with local banks, equity sharing agreements with various partners). 

These entrepreneurs have an established constant net base profit (after operating costs) 

of B > 0 per period (e.g. from standing orders, loyal customers) and in each period, 

they spend a fixed (small) portion of time serving this loyal customer base. Thus, our 

model discusses how to spend the remaining time for growth. 

In each time period, the entrepreneur dedicates her time to a single activity. At 

the start of each period, a crisis may erupt, in which case the entrepreneur must ded-

icate the period to fire-fighting (FF). However, if there is no crisis, she may invest 

that period's time in productive activities such as revenue generation (RG), revenue 

enhancement (RE), or process improvement (PI). We let A' £ {FF,RG,RE,PI} denote 

the action of allocating time period Mo one of these activities. 

The state of the entrepreneur in each time period can be described by (i) whether 

or not there is a crisis, (ii) the current revenue rate (if she were to generate revenue), 

and (iii) the process reliability for future periods. This can be captured by the 3-

dimensional state variable, SL = (O ,R' ,Q{), described next. 

• C' G {0,1} indicates the availability of time in period t. If C' = 0, then time 

is not available in period t because the entrepreneur must "put out fires" (FF). 

If C' = 1, then time is available for the entrepreneur to engage in a productive 

activity. 

. RF E {R M | 0 < RQ < ... < RM < RM+1 < ... < RM} refers to the revenue rate 

of the entrepreneur in period t, if she decides to spend that period generating 

revenue (RG). If she spends the time period on revenue enhancement (RE), the 

revenue rate would increase from RM to RM+\- A higher index denotes a better 

state. 
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Current State S' Decision Immediate Reward Future State St+{ Probability 

(0 ,Rm,qn) FF 

(default) 

B (1 ,Rm,q„) qn (0 ,Rm,qn) FF 

(default) 

B 

(0 ,Rm,q„) i -qn 

(1 > RmiQn) 

RG Rm+B qn 

(1 > RmiQn) 

RG Rm+B 

(0 ,Rm,qn) l -qn 

(1 > RmiQn) RE B (l,Rm+uqn) qn (1 > RmiQn) RE B 

l -qn 

(1 > RmiQn) 

PI B qn+1 

(1 > RmiQn) 

PI B 

(0,Rm,qn+\) l -qn+\ 

Table II.2: Transition Function 

• <f € {qn | 0 < qo < ... < qn < qn+ \ < ... < q^ < 1} refers to the entrepreneur's 

process reliability in period t, i.e. the probability of having to spend period t on 

fire-fighting is 1 — q'. After spending a time period on process improvement (PI), 

the process reliability increases from qn to qn+\- Again, a higher index denotes 

a better state. 

The state transitions are summarized in Table II.2. In §6, we allow for more complex 

transitions such as random process deterioration and uncertain outcome of revenue 

enhancement efforts. 

The entrepreneurs seek to maximize their long term expected profit. We assume 

risk neutrality, recognizing that other risk attitudes are natural directions for future 

research. We denote 8 as the discrete monetary discount factor, C(qn) as a Bernoulli 

random variable with success probability qn representing the availability of time (no 

crisis), and n as a non-anticipating time allocation policy. Thus, the objective of the 

entrepreneur is to maximize the following expected infinite-horizon discounted value 
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of future net revenues: 

En 
Lt=0 

= Y,BV+l+EJY,$+lRt+l(at)Ct+\qt+l(at))\R°,q0 

t=0 
Lf=0 

There exists an optimal time allocation policy 7t* that is stationary (Bertsekas 2000, 

Proposition 7.3.1), which can be found by solving the following dynamic program, 

V(0,Rm,qn) = 0 + bqnV(l,Rm,qn) + b(l-qn)V(0,Rm,qn), (FF) 

V(1 ,Rm,q„)= m a x | o + 5gn + iV(l , /?m ,g„+i) + 8(1 — qn+i)V(0,Rm,qn+i), (PI) 

0 + Sqn V (1, Rm+1 ,qn) + 8 (1 - qn) V {0, Rm+1 ,qn), (RE) 

Rm + bqnV(l,Rm,qn) + b(l-qn)V(0,Rm,qn)\. . (RG) 

( I I I ) 

4.2 Discounting Time and Return on Time Invested 

We transform the discounted revenue stream with interruptions into an equivalent dis-

counted revenue stream without interruptions by using a transformed discount factor, 

C,(q), defined next. 

Definition II.l We define the time discount factor L,{q) as 

8<? 
m = 1 - 5 ( 1 - 9 ) ' 

The next lemma illustrates the properties of the time discount factor. 

Lemma II.l C,(q) is concave increasing in q 6 [0,1], with £(0) = 0 and ^(1) = 8. 
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The lemma shows that future time should be discounted more heavily when the 

frequency of interruptions 1 — q is higher. Also note that, consistent with the behavioral 

studies which find that people discount future time more heavily than they discount 

future money (Zauberman and Lynch 2005), C,(q) < 8, \/q. Our first proposition shows 

that the 3-dimensional state DP (II. 1) can be simplified to an equivalent 2-dimensional 

state DP using the time discount factor C,(q). 

Proposition II.l The DP expression (II. 1) can be simplified as follows: 

V(Rm,qn) = max {c,n+iV(Rm,qn+i), £nV(Rm+i,qn), Rm + L,nV(Rm,qn) j , (II.2) 

where = 

From the formulation, we see that process improvement increases the time discount 

factor from t,n to C,n+\ without altering the revenue rate, whereas revenue enhancement 

improves the revenue rate from Rm to Rm+\ without altering the time-discount factor. 

Using this observation, we can quantify the return on time invested into process 

improvement or revenue enhancement activities. If the entrepreneur decides to gener-

ate revenue in state (Rm ,qn) and forever after, the discounted sum of revenue is given 

by the expression Rm(l + C,n + ). If she spends her time today on process im-

provement to increase the process reliability from qn to qn+\ and generates revenue 

forever after, the discounted sum of revenue is Rm(0 + t,n+\ + H ). Finally, if 

she invests her time today in revenue enhancement to increase the revenue rate from 

Rm to Rm+1 and generates revenue forever after, the discounted sum of revenue is 

Rm+1 (0 + C,n + ££ H ). We formalize the notion of return on time invested (ROTI) to 

gauge whether or not the time invested in process improvement or revenue enhance-

ment offsets the opportunity cost of not generating revenue. 
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Definition II.2 Suppose the entrepreneur is in state (Rm,qn)• 

(i) We define return on time invested in process improvement, ROTlp
n

l, as 

R<1TIPI = + + S+1 + •••) Cn+1 LT=0 l-cl+1 r 1 

(ii) We define return on time invested in revenue enhancement, ROTl'^n, as 

Rm+1 
m+\ BrrrflE _ Rm+\ (0 + + + • • • ) _ C* I / l o 

« m ( l + CB + S + - ) ~ I Z ^ & R m Rm 

Hence, a necessary condition for the time invested in PI or RE to be earned back is that 

ROTl£7 > 1 or ROTI^„ > 1 respectively. 

We next introduce an assumption on the sequence of revenue rates {Rm}. 

Assumption II.l The sequence {Rm} is log-concave increasing. 

In particular, Assumption II.l holds when {Rm} is concave increasing or when it 

has an s-shape, e.g. that defined by Rm+i = (1 + a — Rm) Vm, where the pa-

rameters S > Rm and a € (0,1) are the shape parameters. In fact, growth-based en-

trepreneurs eventually encounter decreasing marginal return over time when increasing 

their revenue rate because of capacity constraints, demand constraints, or competition. 

For example, if the new product or service that an entrepreneur offers is not scalable, 

the growth in the revenue rate will eventually slow because the capacity constrains the 

entrepreneur. If the target market is small, the growth slows as the market becomes 

saturated (Cachon and Terwiesch 2009). If the entrepreneur's new product or service 

is highly scalable and targets a large market, her revenue rate may grow initially at an 

increasing rate, but will eventually slow as imitators enter the market and compete for 

market share (Bass 1969). 
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5 Analysis 

In this section, we present the optimal policy for the DP (1) and elaborate on its struc-

tural results. 

5.1 Optimal Policy 

We first describe the necessary conditions for optimality, by characterizing the neces-

sary sequence of time investments in the following lemma. 

Lemma II.2 Suppose the entrepreneur, who is in state (Rm,qn), wishes to reach state 

(Rm+i,qn+j). Then doing j process improvements followed by i revenue enhancements 

dominates all other policies. 

The intuition behind the clear priority for process improvement is that it creates 

more time in the future by reducing the fire-fighting frequency, and that that extra time 

can be invested into more productive activities allowing the entrepreneur to generate 

revenue at a higher rate sooner. 

Given this structure of the optimal policy, starting from state (Rm ,qn), identifying 

the optimal process reliability threshold level q*(Rm,qn), where the entrepreneur stops 

process improvement and starts revenue enhancement, and the optimal revenue rate 

threshold level R*(q*), where the entrepreneur stops revenue enhancement and starts 

generating revenue, would suffice to characterize the optimal policy. We define these 

threshold levels formally. 

Definition II.3 

(i) We define the improve-up-to level of state (Rm,qn) as the process reliability thresh-

old level q* (Rm,qn). 
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(ii) We define the enhance-up-to level of process reliability level q* as the revenue rate 

threshold level R*(q*). 

We now present our main result. 

Theorem II. 1 (Optimal Time Allocation Policy) 

For entrepreneurs who are in state (Rm,qn), the optimal allocation of available time 

(i.e., when there is no crisis) is the following: 

ifq 

< q*(R mi qn), 

Do Process Improvement. 

Else ifRm < R*(q*), 

Do Revenue Enhancement. 

Else, 

Do Revenue Generation. 

The theorem illustrates the entrepreneur's optimal improvement path for maximizing 

the expected discounted revenue. When time is available, entrepreneurs should always 

first question whether or not the process reliability needs to be improved, and if so, 

focus on process improvement; if not, then question whether or not the revenue rate 

needs to be enhanced, and if so, focus on revenue enhancement; if not, only then focus 

on generating revenue. 

The next proposition describes the properties of these threshold levels. 

Proposition II.2 Under Assumption II. 1, 

(i) For any given process reliability level qn, the optimal improve-up-to level q* (Rm,qn) 
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is nonincreasing in Rm. 

(ii) For each improve-up-to level q*, the optimal enhance-up-to level R*(q*) is nonde-

creasing in q* and is independent of initial Rm. 

Proposition II.2 states the independence of the enhance-up-to level from the initial 

revenue rate Rm, but do not state the independence of the improve-up-to level from the 

initial process reliability qn. We will now show that under an additional assumption 

on the process reliability {qn} and with an appropriately high discount factor 8, the 

independence of the improve-up-to levels can be guaranteed. 

Assumption II.2 The sequence {qn} is log-concave increasing. 

This assumption describes situations in which the entrepreneurs' efforts to increase 

process reliability are met with decreasing marginal returns. This can occur because 

improving process reliability from 50% to 55% or from 90% to 91% both require 

the same effort of eliminating 10% of random disturbances; and if the entrepreneurs 

follow the prescriptions of Pareto analysis, they should address problems from the most 

common to the least common. In particular, this assumption holds when the sequence 

{qn} increases exponentially, i.e. qn — 1 — K f n , where K,y E (0,1), p > 0, and ~f < 8. 

Furthermore, because each time period is assumed to be relatively brief (e.g. a day 

or a half day), the corresponding monetary discount factor 8 will usually be close to 1. 

The next lemma illustrates the consequence of having a high discount factor. 

Lemma II.3 For any integer re {0 , . . . ,M}, 3 8 < 1 such that )rROTIPI} is 

decreasing in n V8 € (8,1). 

The following proposition demonstrates the independence of the threshold q* (Rm, qn) 

from the initial process reliability qn, for each revenue rate Rm. 
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Figure II. 1: Optimal Decisions. The figure on the left hand side represents the structure 

of the optimal policy. The figure on the right hand side compares two different optimal 

paths for entrepreneurs starting at different initial revenue rates. 

Proposition II.3 Suppose a given set of {Rm} and {qn} satisfy Assumption II. 1 and II.2 

respectively, and the discount factor 8 is such that 8 > 8 (Lemma II. 3). Then the 

improve-up-to level, q*(Rm) is independent of the initial process reliability qn. 

Consequently, under these assumptions, the optimal policy described in Theo-

rem II.l can be simplified to prescribing process improvement when qn < q*{Rm). 

A representative optimal policy is displayed in the left hand side of Figure II.l, in 

the two-dimensional state space constructed from a sequence of {Rm} and {qn}- The 

arrows pointing up represent process improvement decisions, the arrows pointing right 

represent the revenue enhancement decisions; and in states with no outgoing arrow the 

entrepreneur generates revenue. 
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5.2 Structural Properties 

We discuss several properties of the optimal policy. First, all instances of the optimal 

policy share the common structure stated next. 

Corollary II. 1 For any state (Rm,qn), if ROTlp
n

l > 1, the optimal policy is to do pro-

cess improvement. 

The corollary gives a clear prescription that, as long as the discounted sum of the 

future time after process improvement is greater than the discounted sum of current 

and future time under the status quo process, improving the process is the optimal 

course of action. Note that this holds regardless of the Rm, the R O T I ^ , or future 

sequences {Rm} or {qn}. Accordingly, one can define the minimum process reliability 

level q = min„ { q : ROTI^7 < 1} below which it is optimal to do process improvement. 

We now provide insights into the value of time spent on the long-term oriented 

activities. The fact that the optimal policy prescribes process improvement and revenue 

enhancement activities before revenue generation suggests that the time invested in the 

former activities have greater contribution to the discounted sum of revenue Y(Rm,qn) 

than does the prevailing revenue rate Rm. For example, suppose an entrepreneur in 

state (1 ,Rm,qn) can spend her day making extra sales calls to generate another $100 in 

profits. It is then common to conclude that the value of her day is $100. However, this 

reasoning is wrong. Suppose she also has an opportunity to spend her day improving 

her processes which will save her a "net present time" of 3 days (ROTI^7 = 3) in the 

future. That means she could make at least the net present value equivalent of 3 days 

worth of sales calls, which is worth $300. Thus the value of her day today should 

instead be $300. 
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By Lemma 2 (see also Lemma II.5 in Appendix), one can express the optimal value 

function V(Rm, qn) in terms of the ROTI's as follows: 

n n*-1 m*-1 
V(Rm,qn) = n ( R O T I f 7 ) n (ROTIM-). 

1 Sn (•=„ y=i 

where the n* and m* represent the indices for the optimal improve-up-to level q* (Rm, qn) 

and optimal enhance-up-to level R*(q*) respectively. The optimal long term value of 

being in state (Rm ,qn) is thus the product of the discounted sum of the prevailing rev-

enue rate in the status quo process yrjK the return on (n* — n) time periods invested 

in process improvement 11/=^1 (ROTlf7), and the return on (m* — m) time periods in-

vested in revenue enhancement n ^ ^ H ^ O T I ^ y ) . In other words, V(Rm,qn) equals 

the discounted sum of the prevailing revenue rate y^jh only when ROTlf7 < 1 Mi and 

ROTIyf < 1 Vj,k, at which point the optimal policy prescribes the entrepreneur to 

generate revenue. 

The next corollary shows that the optimal policy may prescribe entrepreneurs to 

improve the process reliability beyond the minimum process reliability level q, even 

when R O T I ^ > 1. 

Corollary II.2 It is sometimes optimal to do process improvement even when ROTlp
n

l < 

1 andROTliE
n > 1. 

The corollary states that the optimal policy prescribes process improvement even 

when the time invested in process improvement cannot be earned back and the revenue 

rate can be enhanced considerably. The intuition is as follows. When the future rev-

enue rate is high compared to the current revenue rate Rm, the cost of investing time in 

process improvement in the current period can more easily be recovered by generating 

revenue at a higher rate Rm+X > Rm after undergoing % revenue enhancements in the 
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future. In addition, if many time periods will be spent on revenue enhancement activ-

ities, improving beyond the minimum process reliability is optimal in order to be less 

often interrupted by fire-fighting during the revenue enhancement activities. 

The next result shows that it is optimal for a high revenue rate-endowed entrepreneur 

to spend less time on process improvement and revenue enhancement relative to a 

lower revenue rate-endowed entrepreneur who is operating in the same market, which 

causes the latter to sometimes eclipse her high revenue rate counterpart and to earn 

revenue at a higher rate in the future. This phenomenon, described formally in Propo-

sition II.4, is illustrated in the right hand side of Figure II. 1. 

Proposition II.4 Given sequences {Rm} and{qn}, satisfying Assumption II. 1 andll.2, 

and 8 > 8 (Lemma II.3), suppose there are two entrepreneurs A and B initially with 

revenue rates R{)
mA and R°mB respectively, with RQ

mA < R^B and arbitrary process reli-

abilities q®A and q®B- Then, the optimal policy prescribes entrepreneurs A and B to 

reach revenue rates Rr
mA and Rjn[j respectively, where R^A > R^. 

In certain situations, the sequence {qn} may be such that ROTI^7 > 1 Vn, leading 

the entrepreneur to improve her process to make it as reliable as possible, i.e., qn = 

qu, similar to the "quality is free" concept (Crosby 1979). In that special case, the 

following one-stage-look-ahead policy is optimal. 

Corollary II.3 For entrepreneurs who are in state (Rm,qn), suppose that {qri} is such 

that ROTIPI > 1 Vn. Then the optimal allocation of available time (when there is no 

need for fire-fighting) is the following one-stage-look-ahead decision rule: 
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IfROTIp
n' > 1, 

Do Process Improvement. 

Else ifROTI*E
N > 1, 

Do Revenue Enhancement. 

Else, 

Do Revenue Generation. 

Corollary II.3 states that entrepreneurs can sometimes allocate their time optimally by 

only looking ahead one stage. In other words, the knowledge of (i) the time discount 

factor ^(q) and (ii) ROTI™ and ROTI^, may be sufficient for allocating their time op-

timally, and the knowledge of the future sequences {q n} and {Rm} may not necessarily 

add value. 

6 Stochastic Process Deteriorations and Revenue Enhancements 

In this section, we generalize the DP model (II. 1) to allow for minor perturbations in 

the process reliability as well as the uncertainty in the revenue enhancement efforts. 

First, processes frequently deteriorate if they are not consciously maintained. We in-

corporate this by assuming that the process reliability can deteriorate from qn to qn-\ 

Vn > 1 each period with probability 1 — (3 when the entrepreneur is not engaging in 

a process improvement activity (the process in its worst process reliability level qo is 

assumed not to deteriorate further). We assume that this (3 is an exogenous variable 

which is independent of the state. 

Second, despite knowing the sequence of future revenue rates {Rm}, realizing those 

higher revenue rates are often uncertain and may require multiple attempts. We model 
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this by assuming that the revenue enhancement efforts are successful only with proba-

bility a < 1. The sequence of stochastic events and the corresponding state transitions 

are described in Figure II.2. 

t+i 

if no crisis, 
make a decision 

(Km/In) 

Fire Fighting 

Process Improvement 

(Rm.q„) 

(Rm.qn-i) 

l-P (Rm+l/Pn-l) 
P/ (Rm.qn) 

Revenue Generation ion_Q/ (Rm.q„) 

(Rm,qn-i) 

Figure II.2: Sequence of stochastic events and the corresponding state transitions 

With stochastic process deteriorations and uncertain revenue enhancement efforts, 

the DP model (II.l) becomes: 

+ (FF) V(0,Rm,qn) = 0 + jl[8qnV(l,Rm,qn) + 8(l-qn)V(0,Rm,qn) 

+ (1 - (3) ^qn-iV(l,Rm,qn-i) + 5(1 —qn-l)V(0,Rm,qn-i) 

V(l,Rm,qn)= max {0 + Sqn+lV(\,Rm,qn+l) + b(l-qn+l)V(0,Rm,qn+l), (PI) 

0 + + 5(1 —qn)V(0,Rm+\,qn) (RE) 

+ 

+ ( 1 - P ) Rm+i,qn-i) + 6(1 -qn-i)V(0,Rm+uqn-l) 

+(l-a)($[dqnV(l,Rm,qn) + S(l-qn)V(0,Rm,qn) 

+ ( 1 - 0 ) \§qn-\V{\,Rm,qn-\) + 8(1 — qn-i)V(0,Rm,qn-i) 

Rrn + P [5^V( l , / ? m , qn) + 8(1 - qn)V(0,Rm, <?„)] + (RG) 

+ ( 1 - p) [8$B_iV(l , /?m ,?„_i) + 8(1 -qn-i)V(0,Rm,qn-i)\ }, 
(II.3) 

The next proposition states the conditions under which the expression (II.3) can be 
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simplified to a 2-dimensional state DP using modified time discount factors. 

Proposition II.5 Suppose the entrepreneur is in state (Rm,qn), and it is optimal to do 

process improvement in states (l,Rm,qk) V£ < n and in states (l,Rm+\ ik < n. 

Then, expression (II.3) can be simplified to: 

V(Rm,qn) = {^n+iV(Rm,qn+l), ^n(a,$)V(Rm+uqn), Rm + ^)V(Rm,qn)} ,(11.4) 

-here = , _ 8 ( 1 _ • »i,h <W> = &>• """ 

W P ) = K m + (1 - P K M C M - I . = ( " _ „ ) • 

The new discount factors take into consideration, in addition to the chance of fire-

fighting, the chance of doing process improvement when deterioration in the process 

occurs, as well as the failed revenue enhancement efforts. One can easily verify that 

all the discount factors monotonically increase and approach as a , (3 —• 1. 

We next define the return on time invested in process improvement in the presence 

of stochastic process deterioration. 

Definition II.4 Suppose the entrepreneur is in state (1 ,Rm,qn), with deterioration 

probability 1 — P, and it is optimal to do process improvement in states (\,Rm,qk) 

\/k < n. We define return on time invested in process improvement, ROTIPI($), as 

As in the previous section, we assume the same structure of the sequences {Rm} 

and {qn} as stated in Assumption II.l and II.2. Additionally, we will assume the 

following. 
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Assumption II.3 

The discount factor 8 < 1 is large enough such that {ROTIPI ((3)} decreases in n. 

In the next section, we will restrict our attention to the sequences of {Rm}, {qn}, 

and the discount factor 8 which satisfy Assumptions II.1-II.3, and characterize the 

structural properties of the optimal policy. 

6.1 Optimal Policy 

We have the following necessary conditions for optimality, which is an extension of 

Lemma II.2 to accommodate stochastic transitions. 

Lemma II.4 Suppose the optimal decisions in states (Rm+\, qk) Vk < n and (Rm ,qk) 

\/k <n are process improvement. Then, an entrepreneur who went from state (Rm,qn) 

to state (Rm+\, qn+\) did process improvement in state (Rm,qn)• 

The next proposition describes the properties of the resulting optimal policy. 

Proposition II.6 Let q = min„ {q : ROTIp
n'($) < 1} . 

(i) For any process reliability level qn < q, the optimal improve-up-to level q*(Rm,qn) 

is nonincreasing in Rm, 

(ii) For each improve-up-to level q*, the optimal enhance-up-to level R*(q*) is nonde-

creasing in q* and is independent of initial Rm. 

For any state (\,Rm,qn), qn < q, as the properties of the improve-up-to level and 

the enhance-up-to level stipulated in Proposition II.6 remain identical to that stip-

ulated in Proposition II.2, all the corollaries from the previous section, as well as 

Proposition II.4, carry over to the stochastic case. Moreover, the structure of The-

orem II. 1 generalizes to the case in which the process is allowed to stochastically 

63 



www.manaraa.com

deteriorate. In particular, if the process stochastically deteriorates while engaging in 

revenue enhancement or revenue generation activities, the theorem prescribes that the 

entrepreneur should restore the process to the necessary improve-up-to level before 

engaging further in those activities. However, if the process reliability level remains 

above the improve-up-to level after deterioration, the entrepreneur should not improve 

the process, causing the enhance-up-to levels to be altered. Finally, if the revenue en-

hancement effort is unsuccessful, the optimal policy prescribes the entrepreneur to try 

again until she reaches the appropriate enhance-up-to level. 

In the next section, we numerically illustrate the optimal policy of the general DP 

model (II.3) starting from state with process reliability level qn < q. 

6.2 Illustration of the Optimal Policy 

Suppose that the revenue sequence is increasing in an s-shaped fashion, specifically 

Rm+1 = 1 .2-^(100 — Rm) and that the process reliability sequence is concave increas-

ing, specifically, qn = 1 — (0.75)n. Further suppose that the uncertain revenue en-

hancement parameter a = 0.5 and that the stochastic process deterioration parameter 

P = 0.9. Moreover, we assume a reasonably high discount factor 8 = 0.95. For these 

particular sequences, one can easily verify that Assumptions II. 1 —II.3 hold. 

A representative sample path of the optimal policy starting from (R°,q°) = (2,0.25), 

is shown in Figure II.3. Similar to Figure II.l, Figure II.3 depicts the optimal improve-

ment path in the two dimensional state space. We distinguish three phases: the pro-

cess improvement phase, the revenue enhancement phase, and the revenue generation 

phase. The process improvement phase is characterized by process improvements un-

til the process reaches the improve-up-to level associated with the initial revenue rate 
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Figure II.3: An illustration of the sample path in the state space, and its temporal 

dynamics. The sample paths consists of three phases: PI, RE, and RG phases. 

q* (R°, q°). Note that the process reliability level may not monotonically increase in the 

PI phase due to stochastic deteriorations. During the revenue enhancement phase, the 

entrepreneur invests time in revenue enhancement (with uncertain outcome), and the 

process may deteriorate at any time. During this phase, the optimal policy prescribes 

that the entrepreneur should improve the process as soon as it deteriorates to a pro-

cess reliability below the prevailing improve-up-to level. Observe that with stochastic 

process deteriorations, the prevailing improve-up-to level may actually be lower than 

the initial improve-up-to level q*(R°,q°) by Proposition II.6(i). After reaching the 

enhance-up-to level R = R*(q), the entrepreneur starts the revenue generation phase. 

Observe that, by Proposition II.6(ii), the final revenue rate R can be lower than the ini-

tially targeted revenue rate R*(q*(R°)) due to stochastic process deterioration. In that 

last phase, the improve-up-to level q* (R) is equal to the minimum process reliability 

level q. In other words, without any revenue enhancement opportunities, it does not 

pay to engage in process improvement when the time invested in process improvement 

cannot be earned back. Thus, the entrepreneur generates revenue at a constant rate, 
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Figure II.4: Temporal evolution of process reliability qn, revenue rate Rm, and the 

cumulative revenue. 

R (provided there is no crisis) and continues to focus on revenue generation until the 

process deteriorates below q, only after which she improves the process back to q. 

The evolution of the process reliability, revenue rate, and the cumulative revenue is 

shown in Figure II.4. During the process improvement phase, the process reliability is 

increased to the appropriate improve-up-to level, which is above the minimum process 

reliability level q. In other words, it is optimal to over-improve the process upfront 

rather than later to create a safety stock of time. 

In both the revenue enhancement and revenue generation phases, the process is 

improved as soon as it deteriorates to a level below the prevailing improve-up-to level. 

Furthermore, during the revenue enhancement phase, we can observe the uncertainty 

in the revenue enhancement efforts as the revenue is not always enhanced immediately, 

but only after multiple attempts. Once the entrepreneur reaches the enhance-up-to level 

and enters the revenue generation phase, she starts generating revenue at the higher 

revenue rate, which is represented by the increased slope in the cumulative revenue. 
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Finally, a sample path and the temporal dynamics illustrating Proposition II.4 are 

shown in Figure II.5. Consistent with Proposition II.4, Figure II.5 illustrates that en-
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0.4 

XXX-X- X X X- X K X X • 
f - ^ l j 

1 2 3 4 D 5 6 7 

Figure II.5: Different sample paths. One with a low revenue rate, one with a high 

revenue rate. 

trepreneurs who start from a low revenue rate should invest more time in both process 

improvement and revenue enhancement than their counterparts who start from a high 

revenue rate. This causes the former to start accumulating revenue later but at a faster 

rate than the latter. 

7 Practical Time Management Behaviors 

In this section, within the context of our model, we illustrate why common time man-

agement traps are suboptimal. In particular, we highlight the performance difference 

between the optimal policy and two common time management behaviors: "fix-it-

later" and "growth-before-process." 

Fix-it-later. Under the "fix-it-later" policy, an entrepreneur who is in her revenue 

generation phase with an improve-up-to level q, will not improve the process imme-
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diately after it deteriorates as prescribed by the optimal policy, but instead decides to 

"fix it later" until the process deteriorates to an intolerable level. From that point, she 

dedicates her time to process improvement until she reaches the improve-up-to level, 

q. Entrepreneurs may employ this heuristic due to procrastination (O'Donoghue and 

Rabin 1999), or because they feel that they do not have enough time to divert from 

revenue generation to process improvement (Repenning and Sterman 2002). 

We use the parameters P = 0.85, 8 = 0.98, and the sequence {qn} defined by 

qn = 1 — (0.75)", where q = 0.94, and Rm = 10 Vm to illustrate the dynamics. The 

sample paths comparing the optimal policy and the "fix-it-later" policy are shown in 

Figure II.6. The process reliability levels of the two policies are characterized on the 

1| i i , , i i i ! , ; 

CT0'5/ 
0 50 100 150 200 250 300 3! 

0 50 100 150 200 250 300 3! 
t 

Figure II.6: Difference in sample paths: immediate process restoration (optimal pol-

icy) vs. fix it later heuristic. 

left hand side, with the heuristic (bottom figure) showing much larger dips in process 

reliability than the optimal policy (top figure). In fact, under the fix-it-later policy, 

the process reliability evolves in a sawtooth pattern over time. From the cumulative 

revenue on the right hand side, we observe that the heuristic is initially slightly more 

attractive as it generates more revenue by not diverting time to process improvement. 
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However, delaying the process improvement causes the process to deteriorate fur-

ther. Consequently, the entrepreneur must devote significantly more time fire-fighting, 

which causes the revenue accumulation to slow, as reflected by the decreasing slope 

in the cumulative revenue. Thus, even though the practice of immediate fix (process 

improvement) at the expense of revenue generation may seem costly initially, by doing 

so, entrepreneurs can earn substantially more in revenue over the long run, resulting 

in, for this example, an additional 12% gain in discounted revenue. 

Growth-before-process. Under the "growth-before-process" policy, an entrepreneur 

who is in her revenue enhancement phase prefers to focus solely on revenue enhance-

ment and to neglect process improvement until the revenue rate is high enough or the 

process reliability deteriorates to an intolerable level. This is common to entrepreneurs 

as they want to expand and reach a higher revenue rate as soon as possible, or be-

cause revenue enhancement often gives higher return than process improvement (e.g. 

R O T I ^ > ROTC) . 

We use the parameters a = 0.75, (3 = 0.9, 5 = 0.95, and the truncated sequence 

{iqn} defined by qn = 1 — (0.75)", n € {1,2 , . . . ,6} , and {Rm} defined by Rm+\ = 

1.2- j^(100- /? m ) . Consequently, we have that ROTI^(P) > 1, and hence the optimal 

improve-up-to level for all Rm is q^ = 0.82, as in Corollary II.3. We let {R°,q°) = 

(1,0.82), so that the entrepreneur has finished the PI phase and is entering the RE 

phase. Figure II.7 compares the sample paths of this heuristic with that of the optimal 

policy. 

We notice from the figure that prioritizing on revenue enhancement rather than 

process improvement in the revenue enhancement phase can cause the entrepreneurs 

to reach the final revenue rate later than they otherwise would by prioritizing on pro-
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cess improvement. This is because focusing on revenue enhancement and allowing 

the process to deteriorate causes increasingly more eruption of crises, limiting the en-

trepreneur's time to invest in further revenue enhancement activities. Focusing on the 

process improvement, on the other hand, limits such time wasted on fire-fighting, and 

allows the entrepreneur to spend more time on revenue enhancement (as opposed to 

fire-fighting) and to realize her desired revenue rate sooner, resulting in, for this exam-

ple, an additional 16% gain in discounted revenue. 

Figure II.7: Differences in the sample paths: process-focused (optimal policy) vs. 

growth-before-process heuristic 

8 Concluding Remarks 

Time is often the most constrained resource for an entrepreneur. In this paper, we 

develop a stylized time allocation model and provide clear guiding principles for 

time management to help growth-focused entrepreneurs avoid costly time management 

blunders. We hope that this work may serve as a building block for future research in 

entrepreneurial operations. We now summarize our four major findings. 
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First, the optimal policy prescribes entrepreneurs to make process improvement 

their top priority, and in particular, to maintain the process reliability at the appropriate 

level before engaging in other activities. According to our model, investing in process 

improvement creates more time in the future by reducing the time spent on random 

interruptions, allowing the entrepreneurs to reach their growth target faster and to gen-

erate more revenue than any other policy. 

Second, entrepreneurs should seek to overinvest in process improvement relative to 

their long-term reliability target, i.e. create a safety stock of time upfront, when they 

foresee many revenue enhancement opportunities. This is because when the future 

target revenue rate is high compared to the current revenue rate, the cost of investing 

time in process improvement in the current period can more easily be recovered by 

generating revenue at a higher rate in the future. Moreover, by doing so, they can be 

distracted less often by fire-fighting during the long phase of revenue enhancement 

activities. 

Third, our model introduces a framework for evaluating the opportunity cost of 

time. In particular, the opportunity cost of time should not be equated with the pre-

vailing revenue rate, as is commonly done in practice. Instead, one should consider 

the impact her time invested in the process improvement or revenue enhancement ac-

tivities has on her future stream of available time, i.e. the ROTI's, as such use of time 

may bring greater long term value than is indicated by the prevailing revenue rate. The 

opportunity cost of time is equal to the prevailing revenue rate only when there is no 

opportunity for long term improvement. 

Finally, the optimal policy prescribes that an entrepreneur with a high initial rev-

enue rate should invest less time in process improvement and in revenue enhancement 

activities compared to an entrepreneur with a low initial revenue rate. In other words, 
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for the market leader who is able to generate revenue at a high rate, it is optimal to be 

myopic and to harvest the revenue earlier (as improving the process or enhancing the 

revenue stream comes at the expense of reaping large short-term rewards), whereas for 

the market follower, it is optimal to invest time in more long term oriented activities. 

This prescription sometimes results in the follower overtaking the market leader and 

accumulating revenue at a higher rate in the future. 

There are many issues that we have not explored here. For instance, the model ig-

nores a dynamic cash constraint. In the presence of a cash constraint, the entrepreneur 

would need to generate revenue, even though the process improvement target or the 

revenue enhancement target have not been reached. It would be interesting to see if 

the dominance of the PI activities over RE activities would remain valid, but we leave 

this topic for future research. We could also expand the set of activities of the en-

trepreneurs to include relations with donors, which could increase the entrepreneur's 

capital for a certain time horizon. We could also relax the assumption that the existence 

of revenue generation and revenue enhancement opportunities are constant. Further-

more, the model currently assumes that the time intervals between decision making 

epochs are identical and that there is no loss of time associated with switching be-

tween activities, hence ignoring the potential benefits of consolidating time into larger 

blocks. The duration of a crisis could also be considered stochastic, although we con-

jecture that the insights would remain the same. Generalization of some of our results 

to address such issues, although challenging, would be worthwhile. 
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Appendix 

Proof of Lemma II.l. First, from the expression, it is clear that £(0) = 0 and £( 1) = 8. 

By taking the first derivative, we have 

3C (q) ( 1 - 8 ( 1 -q))&-&q 8 ( 1 - 8 ) 
dq ( 1 -8 (1 -q))2 ( 1 -8 (1 -q)Y 

Taking the second derivative, we have, 

> 0 , V 8 e (0,1). 

d f 5 ( 1 - 5 ) \ 282(1 —5)(1 - 8 ( 1 —q)) r , n n 

Tq 1 ( 1 - 8 ( 1 - q ) ? ) = ( 1 - 8 ( 1 - , ) ) 4 < V ( 0 . D-

Proof of Proposition II. 1. Substituting the expression of V (0, Rm, qn) from expression 

(FF) into the expression for V(l,Rm,qn) in equation (II.l), we get 

V(l,Rm,qn) =max{0 + V(0,Rm,qn+[), 0 + V(0,Rm+uqn), Rm + V(0,/?m,^)}(.II.5) 

Furthermore, from (FF) in (II.l), we observe the following relationship between 

V(0,Rm,qn) and V(l,Rm,qn): 

V(0,Rm,qn) = ^V(\,Rm,qn) = ^nV(l,Rm,qn). 

Substituting this expression into equation (II.5), we can rewrite them solely in terms 

of the non-crisis states, and can drop the redundant "1" from the state variable. • 

Proof of Lemma II.2. We apply the interchange argument (Bertsekas 2000, §4.5) to 

show that the optimal policy prescribes j consecutive process improvement followed 

by i consecutive revenue enhancements. Suppose the entrepreneur engages in i RE's 

and j Pi's in the arbitrary order (RE, PI, • • •, RE, PI, • • •, PI, RE) to reach the target 

state ( R m + i , q n + j ) , where she starts generating revenue. The expected net present value 
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of the resulting revenue generated is: 

R„ 
ROTI^n • ROTI™ • • • R O T I ^ ; l • ROTI^ , ._ L n + / . 

1 - C n 

By changing the order of any two consecutive activities of (RE, PI) to (PI, RE) at 

any point in the sequence, we increase the expected value from ROTI^£„ • ROTI^7 = 

^ • U 1 to R O T C • ROTI^„+ 1 = U i 1=^7 • 1 w h e r e > ^ 

by Lemma II. 1. • 

Proof of Theorem II.l. Because the horizon is infinite and the rewards are bounded, 

there exists an optimal policy that is stationary (Bertsekas 2000, Proposition 7.3.1). 

Furthermore, by Lemma II.2, the optimal policy is to do process improvement as long 

as qn < q*(Rm,qn), then do revenue enhancement as long as Rm < R*m(qn), and only 

then do revenue generation. 

Lemma II.5 Under Assumption II.l, 
j* (m,n) D 

•—- - -,i*(m,n+j*(™ 
3n+j* (m,n) 

t/ / p „ \ _ n Y r'* (m>n+J*(m'")) m+i* (m'n+J* m f.\ 
V( Rm,qn)- 1 1 — ; — p ; —1 

where 

i*(m,n) = m a x ( / > 0 : ; „ - ^ ^ - > 1 j , (II.7) 
L Rm+i-1 J 

J / 1 r fi*(m,n+k)R 

. * / \ J • ^ A r r / r ^n+k-\ S n + k ^m+i* (m,n+k) . m Q. 
j (m,n) = m a x p > 0 : W r i * { m , n + k - l ) „ ^ ( f L 8 ) 

[ k= l \ 1 W* ^ ^ 'Rm+i*(m,n+k-l)J ) 

Proof of Lemma II.5. Applying the interchange argument in Lemma II.2 to equation 

(II.2), we have 

V(Rm,qn) = max max ' (II.9) 
j=0,...,N-n t*.| i=0,...,M-m I J 1 — L,n+j ) 
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For any j, note that 

max < i • Rm+< 1 _ m a x J j. t t ^ R-m+i' I Rm-l 
i=Q,...,M—m \ n + j 1 — ( 3 f l + j J i=0,...,M—m | ^ " + J R m + i > - 1 J 1 — 

= • NMAM V ' > 0 : > 1 } > 

i=0,...,M-m Km+i-1 J 

where the first equality is by the telescoping product, and the second equality is by 

Assumption II.l. Thus we have the expression for i*(m,n + j). Using the i*(m,n + j), 

equation (II.9) consequently becomes, 
i r / n \ TT r yi*(m,n+j)Rm+i*(m,n+j) /TT i m V(Rm,qn)= max H C « + / C „ + / — j — f • ( I L 1 ° ) 

j—U,...,yv—n . ,= 1 I 

Note that 

n£ pi* (m,n+k) Rm+i*{m,n+k) 
/=1S«+/Vl-* 1-4.+* ( ri*{m,n)Rm+i*m,n 

t - W / t - 1 S„+/t Km+i»(m,n+/:) 

m i 

where the first equality is the telescoping product, and the second equality is after 

simplification. Thus we have the expression for j*(m,n). • 

Proof of Proposition II.2. The proof uses Lemma II.5, which appears in the Ap-

pendix. 

(i) To show that the improve-up-to level q*(Rm,qn) is nonincreasing in Rm, we will 

show that if it is optimal to do process improvement in state (Rm,qn), it is optimal to 

do process improvement in all states (Rk,qn), \/k < m. In other words, for all n, using 

(II .2) , 

V{Rm,qn) = ^n+lV(Rm,qn+l) V(Rm-\,qn) = ^n+\V(Rm-uqn+l)-
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We prove by contradiction. 

(a) Suppose revenue enhancement is the optimal decision in state (Rm-\,qn), i.e., 

V(Rm-i,qn) = £nV(Rm, qn) > V(/?«_i , qn+1). Then, using (II.6), this is equivalent 

to, 

C,nC,n+lV(Rm,qn+i) = C,nV(Rm,qn) > ^n+lV(Rm-i,qn+i) > Cn+lCn+1 V(Rm,qn+\) 

where the last inequality is by equation (II.2). We have a contradiction since £n < C,n+i 

by Lemma II. 1. 

(b) Suppose revenue generation is the optimal decision in state (Rm-\,qn), i.e., 

V(Rm-i,q„) = > (,n+iV(Rm-i,qn+i). Then, by equation (II.6), we have 

V(Rm-\,qn) = y > C,n+\V(R m— 1) Qn+1 / 
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Dividing both sides by we have 

j* (m,n) j [m,n) f Rm \ 

f—i 1 Ssn+;*(m,n) \ Km-1/ 

i (m,n+7* (m,n)) ^m+i* (m,n+j* (m,n)) 
sn+j*(m,n) p m 

^ ^ f Rm \ 
/ ' = 1 1 Sn+7*(m,n) \ ^m-l / 

n I „ m ) 

> n W " r r r ~ : 1 1 (L+r(m,n) R
 m + ) 

j>— 1 1 S n+j*(m,n) k=l \ lym—l+kJ . 

j*(m,n) I f f J? ^ n Y 1 ~ I ri*{m,n+j* (m,n))/vm+i't(m,n+7*(m,w)) I 

1 _ r , , V j ' H J? f ' 
/ = I 1 W J ' H I J 

where the second inequality is due to Assumption II.l and equation (II.7), i.e., 

* ^m ^ v Rm+1 > > * Rm+i*(m,n) ^ 
*vn— 1 •fvm+(*(m,n) —1 

Multiplying both sides by -pqK and using (II.6) we have 

d j*(m,n) ( p \ p 

T T 7 " > 1 1 I W M I r ; f - > t z T ' 

A VZ Y/=I V ' 1 4M+J*(M,N) J 1 SN 

where the last inequality is by (II.2). This is a contradiction. 

(ii) To show that the enhance-up-to level R*m{qn) is nondecreasing in qn, we show that 

i*(m,n) defined by (II.7) is nondecreasing in n. For any k > 0, we have 
i*(m,n + k) = max j i > 0 : £„+ r ( m n + l t )

 / ? m + l > 1 1 
I. K-m+i— 1 J 

> max { i > 0 : (m „) fm+l > 11 = i*(m,n), (II. 12) 
I. Km+i— 1 J 

since C,(q) is increasing by Lemma II.l. Moreover, by Assumption II.l, for any given 

process reliability level qn, the largest revenue rate R*m(Rm,qn) = Rm* for which 
R * m* > 1 is identical independent of the starting revenue rate. • M̂* — 1 

r= i 
i*{m,n+j*{m,n)) 

X 
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Proof of Lemma II.3 We now want to show that 38 such that V8 G (8,1), 

C£+1 ROTlf7 > C ^ R O T I ^ . , (11.13) 

* Y 

^ + 2 ( 1 - 8 ( 1 _ v ^ + i ( l - 8 ( 1 

For notational simplicity, we define 

L/ /S = a n d R H S _ ( g * + 2 ( l - 8 ( l - f l f c + i ) ) \ r 

qk+1{\-8{\-qk)) \qk+x{\-b{\-qk+2))) 

First, if 8 = 0 and 8 = 1, the inequality (11.14) respectively reduces to 

^ < f ^ Y , and j l ± J _ > r ^ > qk+2 \qk+i J ' Qk+iqk qk qk+\ 

The first inequality holds because qk is increasing and r is any natural number. The 

second inequality is true because {qk} is log-concave increasing (Assumption II.2). 

Thus, we have our result if we show that as 8 increases from 0 to 1, the LHS 

increases and the RHS decreases by taking the first derivatives. 

d _ L H S = ~ fe+2 ~ qk+2 (1 ~ qk) 8) gk+1 (1 ~ qk+1) 

( ^ + 2 - ^ + 2 ( 1 - ^ ) 8 ) 2 

= g*+igfc+2{(i - qk) - (i -qk+i)} 
(qk+2-qk+2(l-qk)&)2 

qk+\qk+2(qk+i - qk) 
(qk+2-qk+2{l -qk)8) 2 — 

> 0 . 

78 



www.manaraa.com

Similarly, 

—RHS = r(RHS) r~1 ~ q k + ~ q k + 2 ^ q k + ~ ?*+*) 
95 (qk+i - qk+i(l - qk+2)S)2 

r-1 («ifc-i-2-^+2(l-9Jk+l)8)9Jfc-l-l(l-^jt-i-2) +r(RHS) 

= r(RHS) r" 

(?*+i - ^ + 1 ( 1 -qk+2)S)2 

1 ^+I<?fc+2{(1 -9A+2) - (1 - ? * + l ) } 
(̂ yfc+2 — ^+2(1 — 

= rfRHS) r~1 q k + i q k + 2 ^ q k + l
 < 0 

( ^ + 2 - ^ + 2 ( 1 — ^ ) S ) 2 ~ 

Thus, 3 5 such that LHS > RHS, i.e., the inequality (11.14) holds, if and only if 5 > 5. 

Lemma II.6 The sequence \ Cfc+i i_r *+'*(m*:) m+,*{-m,k+x) ^ is decreasing in k when 
Ci ' Rm+i*(m,k) 

5 > 5 (see Lemma II. 3). 

Proof of Lemma II.6. By Lemma II.3, when 5 > 5, 

^+1ROTl£7 > ^ + 2 R O T I ^ 1 ^ n + 2 ) - n m , n ) R 0 T 1 PI > ^ j m , „ + 2 ) - r ( m , n ) R O T I P 7 w+1 — Sn+2 

^ pi {m,n+2j — 
- W 2 

i*(m,n) / p \i*(m,n+2) 

/ s» \ i (m,n) / p \ 
r(*(m,n+2)-i*(m,n)1-)nrrTp/ / Sn+1 \ ^ r/*(m,n+2)-/*(m,«)DrYrTp/ / Sw+2 \ 

=» ^ + 1 ROTI„ ^ j > ROTIn+1 ^ — j 

o ROTlf ( f a l ) ' ^ > R O T I ^ , 
where the first implication is because /*(m,n + 1) > i*(m,n) Vn by equation (11.12), 

and the second implication is because j i ^ 1 } decreasing (Lemma II.l), and the 

final equivalence is after dividing both sides by C l + i ' ^ • 

Expanding the expressions using the telescoping product, we have 

pi*(m,n+l) 
Sn+1 Km+i*{m,n+l) 

pi*(m,n) „ 
m+i* (m,n) 
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> 

Y 1 r Rm+l Y Rm+i*(m,n+1) i- Rm+i* (m,n+2) W l /;m ' W l ^ , ••• ^+i/?m+,-«(miB+1)_i ••• WlJtm+,. (W|t,+2)_ t 

f Rm+1 f ^m+2 f Rm+i* (m,n+1) 

( Cw+1 ^ ' r i* (m,n+1) - / * (m,n) Rm+i* {m,n+1) I T / W l P V S n J "-m+i* ( m , n ) 

where the second term is due to equation (II.7), and 

r i * ( m , n + 2 ) „ 

S i + 2 K m + i * ( m , n + 2 ) 

r i * { m , n + 1 ) „ 

/?m+l f Rm+i*(m,n+l) f Rm+i* (m,n+2) 
S«+2 p ' Sn+2 p ,, ' ' ' Sn+2 p ... ,, , ' ' ' Sn+2 p „, , 

. flm+1 ,Rm+2 r Rm+i*(m,n+1) W l Rm W i { „ + , s«+1 ri 

< 

Thus, we have 

^ + 1 R O T l f > C ^ + 2 R O T I n + l 

m+i* (m,n+1)-1 
y Rm+1 Y Rm+l Y Rm+i* (m,n+1) ^m+i* (m,n+2) 
Vi+2 p ' 4>n+2 p ,, Src+2 p ... . . . S«+2 d 

Rm+1 f Rm+2 Y Rm+i* (m,n+l) jr Rm+i*(m,n+2) 
W l " W l • •" Sn+1 Rm+.*{mtn+iyi • • • W l i?m+i.(miII+2)_1 

( U 2 \ t { m ' n + 2 ) 

U » + J 

tW 

ROTIP/ + 1 M + I* (M>N+1) > ROTIF/ 2 ^W+I*(M,N+2) 
Am+/*(m,n) Am+/*(m,n+l) 

Proof of Proposition II.3. Because 5 > 5, then the expression inside the parenthesis 

in (II.8) is decreasing by Lemma II.6. Thus, 

{ r i * { m , n + j ) p 

7 > 0 : ( , „ + / — — y ^ — > 1 W j - l / f « + / * ( m , « + y - i 
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and the resulting improve-up-to level will be independent of the initial process relia-

bility level qn. • 

Proof of Proposition II.4. Proposition II.2(i) shows that for any qn, q*(Rm,q„) is 

nonincreasing in Rm. Moreover, under Assumption II.2 and when 5 > 5, this improve-

up-to level is independent of initial process reliability level qn. Therefore, q" (R{)
mA) > 

Since the enhance-up-to rate R*(q*) is nondecreasing in q*, and is independent 

of the initial revenue rate RQ
m (Proposition II.2), the entrepreneur with the low initial 

revenue rate will always improve at least up to the same level as the entrepreneur with 

high initial revenue rate. • 

Proof of Corollaries II.1-II.3. Looking at equation (II.8), if ROTlf = Ct+i j 1 ^— > 
1 — C 1, then j*(m,n) > 1 (Corollary II.l). Nevertheless, even if Cfc+i < 1 it m aY sti 11 

ri*(m,k+1) , 
be sufficient for Cfc+i l i ? ' +}*<mk) m+i*{m<k+x) > 1 (Corollary II.2). Furthermore, we 

m-3ri*{m,k+1) ^ Y 1 T C R 
see that if ROTlf = r ^ f ; > 1 Vk, then the expression j 1 ^ t ,'*(m,*)D ' + Si Km+i*(m,k) 
1 Vk (Corollary II.3). • 

Lemma II.7 Suppose it is optimal to do process improvement in states (1 ,Rm,qk), 

Vk < n. Then, engaging in process improvement in state (1 ,Rm,qn) results in the 

following relationship, 

V(1 ,Rm,q„) = ^n+l^O^m^n+l), 

Where ^ = l -8( l -««.0» + ( l - P ) W 

Proof of Lemma II.7 We prove by induction. 

(Base case) n = 1, and assume it is optimal to do PI in state (\.Rm.qo). With no further 
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process deterioration in process reliability qo, from expression (II.3) we have 

= CoV(l,/?OT,go). 

V(0,Rm,qi) = 0 + pv(l,/?m,9o) + (l-P)Wl,/?m,9o) 

= (P + ( l 
Substituting this expression into the expression for V(l,Rm,qo), we have 

V(l,Rm,q0) = O + S^i V(l , /?«,9i) + 8 ( l - ^ i ) V ( 0 , / ? w , 9 i ) 

= 0 + 8<7iV(l,/?m,<7i) + 8(1 — <?i)(P+ (1 — 

= 1 -8( 1 )(P+(l-P)?o)V ( 1 ' ^ ' ) 

= CPi lV(l ,Rm,qi). 

(Induction step) Now suppose that it is optimal to do PI in states (1 Vfc < 

n - 2 and that V(1, Rm, qn-i) = Cp,«-1V(1, Rm, qn-1) • Then we have, 

V{0 ,Rm,qn) = ^V(l,Rm,qn-i) + {l-^)V(l,Rm,qn-2) 

Substituting this expression into the expression for V (1, Rm, qn-\), we have . 

V(l,Rm,qn-i) = 0 + bqnV(l,Rm,qn) + b(l-qn)V(0,Rm,qn) 

= o + 8 ^ y ( i , / ? m , ^ ) + 8 ( i - ^ ) ( p + ( i - p ) C p > n - i ) v ( i , / ? , ^ _ i ) 

• 
Proof of Proposition II.5 The proof of this proposition uses Lemma II.7, which ap-

pears in the Appendix. Suppose we do process improvement in states (Rm, qk) V/c < n. 

Then, from (II.3), we obtain the following relationships: 

V(0,Rm,qn) = pV( l , / ? m ^„_ i ) + ( l - p ) y ( l , i ? m , ^ - 2 ) , Vn > 1, 

V(0,Rm,qi) = PV(l , /eM^o) + ( l - P ) V ( 0 , / ? m ^ o ) 

= p v ( i , / e w ^ o ) + ( i - P ) C o V ( i , / ? w ^ o ) . 
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Using these equalities, we can rewrite the dynamic program in terms of the non-crisis 

states as follows, 

V(1 ,Rm,qn) = m a x j 0 + 5qn+iV(l,Rm,qn+i) + 6(1 - qn+\)V(0,R mj qn+1J > 

0 + aV(0,Rm+l,qn) + (l-a)V(0,Rm,qn), 

Rm + V(0,Rm,qn) } 

= max | 6qn+iV(l,Rm,qn+i) 

+5(1 - qn+l)($V(l,Rm,qn) + (1 - $)V(l,Rm,qn-i)), 

a[$V(l,Rm+l,qn-i) + (1 - $)V(l,Rm+uqn-2)} + 

+ (1 - a ) [ $ V ( \ , R m , q n - \ ) + (1 - $)V{\,Rm,qn-2)\, 

Rm + VV(l,Rm,qn-i) + (l-P)V(l,Rm,qn-2) } 
= max | dqn+iV(l,Rm,qn+i) 

+ ( l - a ) ( p + ( l -P)Cp ,„_ i )V( l , / ? m , ^_ 1 ) , 

/?m + (P+(l-P)Cp i n_ 1 )V(l , /?m ,< ?n-l) } 

= max | [5gn+i +5 (1 -qn+i)x 

(PCm+1 + - P)Cp,«+i W F O ^ . ^ + I ) . 

+(1 - a)(PCp,« + (1 - An-i)V(\,Rm,qn), 

Rm + (P^,„ + (1 - mvAn-l)V(l,Rrn,qn) } 

= max | C,^n+iV(l,Rm,qn+i), 

0&W)V(l,Rm+hqn) + (l-a)^®)V(l,Rm,qn), 

Rm + U$)V(hRm,qn) }, 
where the third and fourth equality is due to Lemma II.7, and the final equality is 
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because 

+ = AND 

S(1 -9n+l)(PCp,«+l + (! - PKp,n+lCp,J + S<ln+1 = Cp,„+1-

Further simplifying the second expression inside the maximization expression as, 

we have our expression after dropping the redundant "1", 

V(Rm,qn) =rnax{^n+lV(Rm,qn+i),t;n{a,$)V(Rm+i,qn),Rm + ^n($)V(Rm,qn)}. 

U 

Proof of Lemma II.4 The proof is based on the DP recursion (II.4) and is similar to 

the proof of Lemma II.2, with appropriate changes in the discount factors. • 

Lemma II.8 Suppose that the decisions in states (l,Rm,qn-\) and (1,Rm+1,qn-\) are 

RE andRG respectively. Then, denoting K(m,n) = bqnV(l,Rm,qn) 

+ 8(l-qn)V(0,Rm,q„), 

K(m+l,n)-K(m,n)>K(m+l,n-l)-K(m,n-l). 
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Proof of Lemma II.8 We have, 

K(m + l,n—l) = bqn-iV(l,Rm+i,qn-i) + d(\-qn-i)V(0,Rm+i,qn-i) 

= Sqn-\Rm+l+&qn-lV(0,Rm+\,qn-l) 

+8(l-qn-i)V(0,Rm+hqn-i) 

= 8qn-iRm+i + SV(0,Rm+i,qn-i) 

= 5qn-iRm+i + b$K(m + 1, n - 1) + 8( 1 - $)K(m + 1, n - 2), 

K(m,n-1) = Sqn-iV(l,Rm,qn-i) + 5(l-qn-i)V(0,Rm,qn-i) 

= 8qn-iaV(0,Rm+uqn-i) + dqn-i(l -a)V(0,Rm,qn-{) 

+b{\-qn-i)V{Q,Rm,qn-\) 

= dqn-iOV(0,Rm+i,qn-i) + 8(1 - qn-ia)V(0,Rm,qn-i), 

K(m+l,n— I) — K(m,n — 1) 

= bqn-iRm+\ + 5 ( 1 -qn-ia)V(0,Rm+\,qn-\) - 8 ( 1 - qn-\CL)V (0,Rm,qn-\) 

= bqn-\Rm+\ + 8 ( 1 —g„_ia){PA r(m+ l,n— 1) + (1 — $)K(m-\- l ,n —2)} 

- 8 ( 1 -qn..\a){$K{m,n- 1) + (1 - P)AT(m,n-2)} 

= 8qn-\Rm+\ + 8 ( 1 -qn-ia)${K(m+l,n- 1) —K(m,n— 1)} 

+b(\-qn-\a)(l-$){K{m+\,n-2)-K{m,n-2)} 

bqn-iRm+i 5(1 - P ) ( l - q „ - i a ) r . , u H—-——^jz rL{K(m+ l,n — 2) — K(m:n — 2)}. 
l - 8 ( l - ^ _ i a ) P 1 - 8 p ( l - q n - i d ) 

We have that 

K{m +1, n — 1) — K(m, n—\) 
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d q n - i R m + i 8 ( l - P ) ( l - g „ - i a ) r , , . u H—-—r^T —{K(m+ l,n — 2) — K(m,n — 2)} 
l - 8 P ( l - ^ _ i a ) 1 -5(3(1 

< bqn-iRm+i ^ hqnRm+\ 
1 - 8 ( 1 - q n - \ a ) 1 - 8 ( 1 - q n & y 

where the first inequality is because the expression is increasing in (3 since K(m + 

l , n — 2) > K(m,n — 2) and is therefore bounded from above when ( 3 = 1 ; and the 

second inequality is because {q^} is increasing in k. Therefore, 

(\-8(l-qna)){K(m+l,n-l)-K(m,n-l)}<bqnRm+l 

8qn 

- 1 -8(3(1 -qna)Km+l 

i q n 

{K(m+ l,n — 1) — K(m,n— 1)} < {K(m+ l,n)-K(m,n)}. 

Proof of Proposition II.6 We prove by construction. 

(i) For any m < M , suppose that in state (l,Rm+\ ,qt) Vqk < q, it is optimal to do 

process improvement up to q*(Rm+1) > q. Then, starting in state (1 ,Rm,1k) Vtfk < <7> 

by Lemma II.4, it is suboptimal to do revenue enhancement for all process reliability 

q < q*(Rm+1). Thus q*(Rm) > q*(Rm+1). 

(ii) Suppose that the optimal decisions in states (1 ,Rm,qn) and (l,Rm+i,qn) are 

RE and RG respectively. To show that the enhance-up-to level is nondecreasing in n, 
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we will show that RE dominates RG in state (\,Rm,qn+\). In state (1 ,Rm,qn), from 

expression (II.3), we have 

aV(0,Rm+i,qn) + (l-a)V(0,Rm,qn) > Rm + V(0,Rm,qn) (11.15) 

& V(0,Rm+uqn) > -^-+V(0,Rm,qn) 

1 — a 

V(0,Rm+uqn) > {Rm + V(0,Rm,qn)} + —^Rm, 

Furthermore, defining K(m,n) = §qnV(\,Rm,qn) + h(\-qn)V{0,Rm,qn) (LemmaII.8), and $ = t-spa-gn) ' w e h a V C 

V{0,Rm+i,qn) = 0 + ^bqnV(l,Rm+uqn) + 5(\-qn)V{0,Rm+l,qn) 

+ ( 1 - 0 ) + 5(1 — qn-i)V(0,Rm+i,qn-i) 

= 0 + (3 ^bqnV(l,Rm+i,qn)+ 8(1 — qn)V(0,Rm+i,qn) 

+ (1 — $)K{m+ l,n — 1) 

Win \ z /1 d . x , ( 1 - P ) 

sp<?„ 

1 - 5 P ( 1 —qn) 
V(l,Rm+i,qn) l - f 3 5 ( l -qn) 

( 1 - P ) 

K(m+l,n-l), 

= $ (Rm+l + V(0,Rm+l,qn)) + ™ K(m+l,n- 1), 

in which the final equality is because it is optimal to do RG in state (l,Rm+\,qn) by 

assumption. Solving for V(0,Rm+i,qn), we have 

1 - P V(0,Rm+uqn) 
$ 1 

Rm+l + 
i-ce 

c! Rm+l + 

K(m + l,n- 1) 

K(m + l , n — 1). (11.16) 

1 — ^ 1 — P^(i — qn) 

1 - P 
1 v i - p 5 , 

Using a similar logic, we can show that, because RG is not necessarily optimal in 

state (1 ,Rm,qn), 

V(0,Rm,qn) > i P 

i - c 2 
Rm + 

1 - P 
1 — (35 

K(m,n— 1). . (11.17) 
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Substituting the expressions (11.16) and (11.17) back into the inequality (11.15), we have 

m 

* (11.19) 
1 - t f 1 

> ( r r p ) {K(m,n- 1)-K(m+ l,n- 1)} + Rm 

P5 , Rm 

> (11.20) 

We have 

f35 (J? J? \ R m P 5 ( „ „ ^ R>n :qn+\\Km+1 —K-m) > , K^<ln\K-m+1 ~ K-m) 1 - P 5 W + H W 1 m / a m ' a 

where the first inequality is because { q i s increasing in k, the second due to equation 

(11.20), the third because in KRE(m,n- 1) = bqn^iVRE(l,Rm,qn-i) 

+ 6(1 — qn-i)VRE(0,Rm,qn-i) we assume that the decision in state (l,Rm,qn-\) is 

RE, which may be suboptimal, and the final inequality is due to Lemma II.8. 

Rolling back, we have that in state ( l ,R m , q n + i ) , doing RG is dominated by doing 

RE followed by doing RG, i.e. 

VRG(0,Rm+uqn+i) > ^ + V(0,Rm,qn+l). 
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Since doing RG in state (\,Rm+i,qn+\) is not necessarily the optimal decision, we 

have 

1/(0,^+1,^+1) > VRG(0,Rm+l,qn+l) > ^ + V(0,Rm,qn+l). 
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CHAPTER III 

The Time-Money Tradeoff in the Entrepreneurial 

Production and Hiring 

The supply of time is totally inelastic. No matter how high the demand, the 
supply will not go up. There is no price for it. Time is totally perishable and 
cannot be stored. Yesterday's time is gone forever, and will never come back. 
Time is always in short supply. 

- Peter F. Drucker 

1 Introduction 

Consider an entrepreneurial firm during its growth phase, when the entrepreneur is 

the primary decision maker. As the firm expands, an increasing number of tasks (of 

varying importance) surfaces which require the entrepreneur's attention, creating an 

overwhelming demand on the entrepreneur's time (Gifford 1992). Because the supply 

of time remains constant, to sustain growth, the entrepreneurs must hire employees and 

delegate the low value-adding tasks, to free up time for the high value-adding activities 

in return for the wage payments. 

Simultaneously however, the entrepreneurs are constantly cash-starved as there 

exists an extraordinary need for additional funds to keep up with the pace of growth 
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(Hambrick and Crozier 1985), often leaving them resorting to financial bootstrapping 

to fund growth (Ebben and Johnson 2006). Thus, whether or not the value of additional 

time gained would offset the cost of wage payments is unclear. Furthermore, for firms 

without the managerial resources for systematic recruiting efforts (Aldrich and Fiol 

1994) or the legitimacy to attract highly qualified employees (Williamson 2000), the 

process of hiring entails significant upfront investments of both entrepreneurs' time 

and money and thus may interfere with revenue production and growth (Cook 1999). 

What is the relative prices of additional time and additional money? When is it 

appropriate for the entrepreneur to seek a new employee? How should the associated 

setup time, setup cost, and wage influence the timing of the hiring decision, and how 

does the optimal timing affect the shadow values of time and money? While it is clear 

that hiring is critical for sustained growth of organizations (e.g. Koch and McGrath 

1996), there exist to date few explicit guidelines for the timing of hiring decision faced 

by entrepreneurial firms. 

In this paper, we present a formalized model of the entrepreneurial production and 

outline how the inputs of time and money interact over time. Motivated by the theory 

of constraints (Goldratt and Cox 2004), we model the entrepreneur's production as 

a function of time and money, the chief constraints of entrepreneurial firms during 

growth (Klaas et al. 2000, Hambrick and Crozier 1985). Specifically, as both time and 

money are necessary for generating revenue, we employ the Cobb Douglas function, 

representing money and time as complementary resources. Viewing hiring as a tradeoff 

between the fungible resources of time and money (e.g. Soman 2001, Devoe and 

Pfeffer 2007), we characterize the optimal timing of the hiring decision faced by the 

entrepreneurial firms. 

We demonstrate that the shadow value of time always becomes greater than the 
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shadow value of money, ultimately making time the key bottleneck resource. More-

over, we establish that there exists a unique cash level threshold above which it is 

optimal to hire. In fact, we find that the optimal timing of hiring maximizes the post-

hire gap between the shadow values of time and money. Furthermore, we find that the 

hiring threshold is nonmonotonic in the setup time associated with hiring, due to the 

tradeoff between the need to delay hiring to preserve the growth momentum and the 

need to expedite hiring given that the shadow value of time is increasing. By contrast, 

the threshold is always increasing in the setup cost, thus highlighting the importance 

of differentiating setup cost with setup time. We test the robustness of our model to 

our assumptions and present further insights by generalizing the production function 

to the constant-elasticity-of-substitution (CES) production function and extending our 

results to multiple hiring decisions. 

The paper is organized as follows. We review the related literature in the next 

section. Section 3 introduces the basic model and characterizes its optimal solutions, 

in particular the evolution of the shadow values of time and money during the firm's 

growth. We introduce in §4 the hiring decision of the entrepreneur as a way to trade 

off money against time, characterize the optimal hiring policy, and derive the compar-

ative statics with respect to the hiring setup cost and setup time. Section 5 tests the 

robustness of our model to our assumptions and presents further insights. We present 

our conclusions and directions for future research in §6. All proofs appear in the Ap-

pendix. 
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2 Literature Review 

In this section, we first examine the research on organizational life-cycle of firms and 

motivate time and money as the key constrained inputs to the entrepreneurial produc-

tion function during the growth phase. Then, we review the related literature on hiring 

decisions. 

2.1 The Entrepreneurial Production Function 

We first formalize the growth phase of the entrepreneurial firm in the context of the 

organizational life cycle research. We will then review the literature which find en-

trepreneur's time and money as the key constrained resources during high growth. 

2.1.1 Phases in the Organizational Life Cycles. 

A myriad of research on organizational life cycles examines the organizational evolu-

tion of firms from their birth to maturity. In particular, Quinn and Cameron (1983), in 

a review of nine different life cycle models, notes that most models contain the follow-

ing four stages: (1) entrepreneurial stage (early innovation, niche formation, creativ-

ity); (2) collectivity stage (high cohesion, commitment); (3) formalized and control 

stage (stability and institutionalization); and (4) structure elaboration and adaptation 

stage (domain expansion and decentralization). While the length of early stage is firm-

dependent, they note that "a consistent pattern of development seem to occur in orga-

nizations over time, and organizational activities and structure in one stage are not the 

same as the activities and structure present in another stage." 

In contrast to firms in the first stage, whose primary objective is survival (Steinmetz 
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1969), in the second stage, firms are considered to have established a market niche with 

their product or service, i.e. have passed the "survival threshold", and focus on sus-

taining their growth. During this phase, while the entrepreneur maintains direct control 

of major activities, informal structures and communication mechanisms develop. The 

third stage and fourth stage describes the maturation phases where the firms shed their 

entrepreneurial characteristics and transforms into a professional organization. 

While most research on entrepreneurial firms focuses on the first stage of the or-

ganizational life-cycle - i.e. discovery of entrepreneurial opportunities, the process of 

innovation, decisions to maximize the survival likelihood (e.g. Shane and Venkatara-

man 2000), we focus on entrepreneurial firms in the second stage. In particular, we 

focus on the entrepreneurs who seek cash-out opportunities and whose objective is to 

maximize the value of the firm prior to sale (e.g. Bygrave and Zacharakis 2010, Babich 

and Sobel 2004). 

2.1.2 Time and Money as Inputs. 

During the growth phase, entrepreneurs are simultaneously limited in both time and 

money. The constraints on time during growth is primarily caused by the increasing 

demands for the entrepreneur's attention. Simon (1976, pg. 294) argues that "attention 

is the chief bottleneck in organizational activity, and the bottleneck becomes narrower 

and narrower as we move to the tops of organizations." Gifford (1992) argues that 

the attention bottleneck is particularly pronounced and sustains throughout the high-

growth phase because the demand for the entrepreneur's attention increases due to the 

tasks endogenously created by the entrepreneur's allocation of attention to the growth 

activities. Nonetheless, during this growth phase, entrepreneurs' attention should not 

be spared as "a CEO who knows everything that is going on and pays attention to the 
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smallest details . . . [is] beneficial and necessary for the company" (Flamholtz 1986). 

As such, various time allocation models in the entrepreneurial context have been ex-

amined (e.g. Levesque and MacCrimmon 1998, Levesque et al. 2002, Levesque et al. 

2005). 

Moreover, during the growth phase, in order to keep up with the pace of growth, en-

trepreneurs are constantly cash-starved. While the initial financial capital is important 

for survival and achieving high growth (Cooper et al. 1994), there is an ongoing need 

for additional cash for new machinery, equipment, talent, etc., to fuel growth under 

changing market conditions (Hambrick and Crozier 1985). As a result, entrepreneurs 

constantly search for additional funds, either externally or internally via financial boot-

strapping (Ebben and Johnson 2006). As such, the cash limitations has been the basis 

for many entrepreneurial operations management models (e.g. Swinney et al. 2005, 

Archibald et al. 2002). 

In this paper, applying the prescriptions of the theory of constraints (Goldratt and 

Cox 2004), we model the entrepreneur's production as a function of time and money, 

the chief constraints of entrepreneurial firms during growth. Although entrepreneurial 

production models incorporating labor and capital have been introduced (e.g. Gar-

maise 2008), the study of dynamic evolution of the constraints or the exchange be-

tween the two resources have been ignored. Because time and money are fungible 

resources (e.g. Soman 2001, LeClerc et al. 1995, Devoe and Pfeffer 2007, Okada and 

Hoch 2004) where time (money) can often be replaced by money (time) during pro-

duction, we employ the Cobb-Douglas production function - with time and money as 

the complementary inputs - to examine how to trade off money against time. 
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2.2 Hiring Decisions 

We review two strands of literature related to the timing of hiring decisions faced 

by resource constrained entrepreneurial firms and highlight our contributions. The 

first literature provides descriptive insights of human resource management decisions, 

whereas the second strand presents prescriptive insights to hiring. 

2.2.1 Empirical Research. 

For firms operating in complex and dynamic competitive environments, their human 

capital is an important source of sustained competitive advantage (Hitt et al. 2001). For 

example, Koch and McGrath (1996) empirically show that firms utilizing more sophis-

ticated human resource planning, recruitment, and selection strategies show higher la-

bor productivity, whereas Kor (2003) reports that diversity of managerial experiences 

in the top management team allows firms to better seize new growth opportunities. 

The human resources management capability becomes particularly important for small 

firms during rapid growth phases (Thakur 1998), as there exist significant recruiting 

and training needs as job demands expand continually (Kotter and Sathe 1978), and 

because they must make productive use of their limited resources (Siegel et al. 1993). 

The process of hiring, however, presents a significant challenge for growth-oriented 

firms constrained in time and money (Tansky and Heneman 2006, Klaas et al. 2000). 

For example, there is an extraordinary need for additional funds to keep up with the 

pace of growth, even when the firm is profitable (Hambrick and Crozier 1985), and 

the time consuming nature of many complex human resources (HR) activities interfere 

with managerial responsibilities that are directly related to revenue production (Cook 

1999). The resource drain associated with hiring often arises when the firms lack 
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the legitimacy to recruit the skills they need (Williamson 2000), or when formal HR 

systems do not exist (Aldrich and Fiol 1994). 

When hiring takes place, tasks are often created after new employees are hired 

rather than employees being hired to perform specific tasks, due to the lack of es-

tablished departmental boundaries or standardized tasks or roles (Flamholtz 1986). In 

such opportunistic hiring scenarios, unlike the task-oriented hiring scenarios where the 

employee's specific skills are sought after, the organizational fit of the employee be-

comes critical (Levesque 2005). Accordingly, it is found that the top manager's social 

networks replaces the core HR functions associated with hiring (Collins and Clarck 

2003). 

In contrast to these empirical descriptions of the hiring decisions faced by en-

trepreneurial firms, we develop a formal model of hiring for entrepreneurial firms and 

characterize the optimal timing of the hiring decisions. 

2.2.2 Prescriptive Research. 

Although staffing has been widely studied in the operations management literature, it 

has been mostly studied in the context of established firms with existing demands and 

sufficient resources. 

Optimal hiring policies have been derived to cope with intra or inter-day varia-

tions, respectively using queuing or mathematical programming approaches. Using 

a queuing model, Bassamboo et al. (2006) propose call center staffing policies that 

minimize the sum of personnel costs and abandonment penalties, while Pinker and 

Shumsky (2000) and Gans and Zhou (2002) refine the queuing model to account for 

specialization and learning. 
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In contrast to queuing models, which consider a stationary but stochastic environ-

ment to study intra-day variations, mathematical programming approaches typically 

consider a nonstationary, but deterministic environment to study inter-day variations. 

In particular, Holt et al. (1960) examine in their seminal paper, the workforce levels 

to minimize the long-run costs of overtime/idle time, and hiring/layoff costs. Pro-

duction smoothing models have evolved to derive the optimal hiring and promotion 

policies by considering differences in productivity between experienced workers and 

new hires (Orrbeck et al. 1968), learning curves (Ebert 1976), organizational age of 

workers and their effectiveness (Gaimon and Thompson 1984), and stochastic em-

ployee turnovers (e.g. Bordoloi and Matsuo 2002). Under similar settings, Aksin 

(2007) develops a modeling framework to assesses the marginal value of a human as-

set. However, whereas in these studies the demand is typically considered exogenous, 

we consider an endogenous demand (through the Cobb-Douglas production function), 

as entrepreneurs often create their own demand (Schumpeter 1934). 

3 Basic Model 

In this section, we introduce the assumptions, present the model, and discuss the opti-

mal solution. 

3.1 Assumptions 

We consider a dynamic model where the entrepreneurial firm accumulates revenue 

over time. We assume that entrepreneurs endogenously create demand for their prod-

uct or services (Schumpeter 1934), and thus characterize the firm's revenue in each 

period t as a function of the entrepreneur's time investment (Tt) and money investment 

102 



www.manaraa.com

{Mi), which represent the two most constrained resources of an entrepreneurial firm 

(Tansky and Heneman 2006). Moreover, we require that both time and money are re-

quired to produce revenue (i.e. complementary), and we assume constant elasticity of 

substitution between the two resources. 

Our model focuses on the entrepreneurial firms belonging to the second stage in the 

organization life cycle model (according to summary model by Quinn and Cameron 

1983), where the firm is considered to have established a market niche with their 

new product or service, and therefore have passed the "survival threshold" (Steinmetz 

1969). This phase characterizes the phase where the main objective is to capitalize on 

the growth opportunities and to maximize the value of the firm prior to sale. Therefore, 

we assume that a lack of cash would constrain the rate of growth but would not make 

the firm at the risk of bankruptcy. 

Moreover, during this phase, informal structures and communication mechanisms 

develop and the entrepreneur's focus shifts from the intra-day variations to inter-day 

growth trajectories (McCarthy et al. 1990). Accordingly, we consider each time period 

to be long enough (e.g. month) such that the temporal aggregation marginalizes the 

day-to-day variability in revenue, and assume that the firm's revenue each period is 

deterministic, similar to the production smoothing models (Holt et al. 1960). In par-

ticular, we employ the Cobb-Douglas (C-D) production function (we generalize to the 

CES production function of Solow (1956) in §5.1) to model the revenue Rt and profit 

n f earned in each period t as follows: 

R(MtJt) = KM?%;P, n(Mt,Tt) = KM?T?-Mt. 

The coefficient K represents the entrepreneur's productivity (or entrepreneur's indi-

vidual talent) inherent to the firm. The parameters a and P represent the revenue's 
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sensitivity on money and time investments respectively, and can be also interpreted as 

the inherent characteristics of the industry the entrepreneurs operate in (e.g. Arrow 

et al. 1961). We assume these parameters do not change over time. Furthermore, we 

impose the following assumption on the parameters. 

Assumption III.l (i) K is s.t. {M\KMaT$ > M} / 0, (ii) a < 1. 

The first assumption assures that the parameter K is large enough that investing money 

in the business is profitable; the second assumption states that the money invest-

ment will see a decreasing marginal return on the revenue. Note that despite As-

sumption Ill.l(ii), the firm's returns-to-scale can be decreasing (a + (3 < 1), constant 

(a + P = 1), or increasing (a + (3 > 1). 

3.2 Model 

In the beginning of each period t, the state of the firm is characterized by the available 

money It and the available time Jt. The initial constraint on money /o represents the 

seed capital raised to start the business (i.e. from credit cards, personal savings, friends 

and family, or angel investors). Because time cannot be inventoried, the available time 

each period is assumed to remain constant, i.e. Jt=J Vt. The money not invested into 

the firm in period t is available in period t + 1 after earning an interest of r > 0, whereas 

the time not invested in period t will not carry over to period t + 1. As a function of 

the interest rate, we express the discount factor as 8 = ^ < 1. 

We note the flexibility 8 provides in the interpretation and modeling. First, the 1 — 8 

can be interpreted as the probability that firm goes bankrupt in the next period, i.e. a 

low 8 implies a high risk business. This is similar to the risk-adjusted net-present-value 

(or rNPV) framework used in finance to value risky future cash flows. Secondly, the 
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discount factor 8 allows for the growth rate of the discounted cash position to slow over 

time, characterizing the decreasing growth rate of firms in practice (Penrose 1959). 

The money inventory dynamics is as follows. Suppose the entrepreneur invests 

money Mt < It and time Tt < J in period t. Then the money invested into the business 

will become KMfT^ in period t + 1, while the uninvested money It — Mt will gain 

interest to become (1 + r)(It — Mt) in period t+ 1. Thus we have: 

It+l = (l + r)(It-Mt) + KM?T?. 

We assume the entrepreneur's objective is to maximize the value of the firm when 

they offer for sale (Bygrave and Zacharakis 2010) or IPO (Babich and Sobel 2004). 

We model this by the entrepreneur's discounted cash position in period N, i.e. 8n~1IN-

Thus, we have the following model: 

max{Mt)2}} 8n~1In(MQ, ... ,MN-i;TQ, ... ,TN-1) 

s.t. Mt<It, Tt<Jt, t = 0,...,N-l, 
(III.l) 

It+l = (l+r)(It-Mt) + K M ^ , t = 0,...,N-l, 

M„Tt>0, t = 0,...,N-l, 

After recursively rearranging the terms, we have 

It+l = (l+ry+lIo+£(l + ry-k(dKMZTl-Mk) 
k=0 v ' 

= (l+r)t+lI0+£(l+ry-knk(Mk,Tk). 
k=0 

After substituting the above expression in the constraint and in the objective, we can 
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convert (III. 1) to: 

(III.2) 

t-1 
s.t. Mt < (1 + r )7 0 + £ (1 + ry-knk(Mk, Tk), t = 0,...,N- 1,(111.3) 

In other words, the objective of maximizing the final period's discounted ash position 

can be equivalently thought of as maximizing the discounted sum of profits. Since 

TLt(Mt,Tt) < TLt(Mt,J) < the objective 8n~1IN converges to a finite value as N —> °° 

(Bertsekas 2000), making the model extendable to an infinite horizon. 

3.3 Optimal Solution 

In this section, we analyze the optimal investment M* and T* for each t, and show 

the evolution of the shadow values of money and time, /J* and T* associated with 

constraints (III.3) and (III.4), revealing a bottleneck shift over time. The following 

proposition presents the optimal investments and their respective shadow values. 

Proposition III.l The optimal investment of money and time each period, M* and T* 

respectively, and their respective shadow values fi* and x* are given by the following 

expressions: 

Tt<Jt, t = 0,...,N— 1,(111.4) 

MuTt> 0, r = 0 , . . . , W - l . (III.5) 
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Following the optimal policy, during the periods t for which It < ( b a K J ^ j ' a , the 

per-period profit is increasing in t, and the cash position grows at an increasing rate. 

When It > ( 5 a K J ^ j 1 = 5 , M* = ( S a K J ^ j ~ , and the per-period profit n , remains 

constant at K(M*)AJ$ — M*, thus resulting in the cash position to grow at a constant 

rate each period. 

The term njtU+I — AT ' appears in both [ut and xt denotes the com-

pounding effect, as it describes the influence in the future revenues from periods t + 1 

to N. Because oK(M*knTk*)fi 
Mr. > 1, this term is increasing in the remaining periods-to-go 

aK{M;)a(T,*)V 
M; 

M ! respec-(N — t). On the other hand, the coefficients —v v ' ' 1 and 

tively denote the current effect, or the immediate impact of additional money and time 

on the current period profit. 

The following lemma formalizes the time period in which it is optimal to invest all 

the earned revenue back into the business. 

Lemma III.1 Let IQ be the initial seed capital, and let 

/ . ,,, \ 
N* log log a 1 

log a 
/o )) 

Then, it is optimal to invest the entire revenue back (i.e. M* = It) into the business if 

and only if t < N*. 

We will refer to the period {t :t <N*} as the bootstrapping phase, as it is com-

monly known in practice (Ebben and Johnson 2006). Note that the length of the boot-

strapping phase decreases in IQ, and increases in a , |3, 5, K, and J . In particular, as 

a I, N* In other words, the bootstrapping phase, during which additional 

107 



www.manaraa.com

money can increase the growth rate, can be arbitrarily long. This is consistent with the 

common belief that cash is the most constrained resource. 

The next corollary formalizes the meaning of the shadow values {/J*} and {x*}. 

Corollary III.l 

In other words, the shadow values {/J* } and {x*} respectively denote the incremen-

tal increase in the objective function DN~ (MQ , . . . . M , . . . . . Myv- i; 7o, . . . . 7] . . . . . 7>/_ \) 

when the constraint placed on the available money It and the constraint place on the 

available time JT are incrementally relaxed. In other words, if MT < LT + u, TT < J + v, 

for small u, v, 

IN(MQ,--- ,MT + u,--- ,MN-I\TQ, • • • ,Tt+v,--- ,TN-I) 

= IN(M0,--- ,MN-I;TOR-- ,7Jv—1) +FI*U + x*v. 

We illustrate the properties of the shadow values /j* and x* next. 

Theorem III.l 

i) The shadow value of money /j* is nonincreasing in t for any 8 < 1. 

ii) For t < N* — 1, the shadow value on time T* is exponentially increasing in t; and 

for t > N*, the shadow value of time x* is exponentially decreasing in t. 

iii) For t < N* — 1, the difference between the shadow value of time and the shadow 

value of money, X* — p*, is increasing in t. Moreover, for t > N*, x* > p*. 

&UT(MT,TT) , 8 ' n T(M„TT) 
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The theorem states that money becomes a less valuable resource during the boot-

strapping phase whereas time becomes a more valuable resource. In particular, The-

orem III.l becomes more pronounced as 8 —> 1, where (i) jj* is decreasing for t < N* 

and /J* = 0 for t > N*, (ii) xt is exponentially increasing for t <N*, and xt = x^* for all 

t >N*, and (iii) x*t — /j* is increasing in t. An example of the evolution of the shadow 

values is illustrated in Figure III.l. 

This dynamic evolution of the shadow prices is due to two factors: the physical 

difference between time and money, and their complementary nature in the production 

function. First, because the revenue earned in period t can be reinvested into the firm as 

money in period t + 1 , the available money each period increases, whereas the available 

time, which cannot be stored, remains constant each period. Therefore, time becomes 

relatively more scarce than money in subsequent periods. Secondly, because both time 

and money are required to generate revenue (complementary resources), the relative 

value of time is greater when there is more available money to invest. Therefore the 

value of additional time increases as the supply of money increases. 

Figure III.l: Example of shadow values, ( a = 0.9, (3 = 0 3 , K = 1.1, A = 3 , 7 = 20, 

8 = 0.95) 
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Figure III. 1 illustrates that in the early phases of growth, the main bottleneck re-

source of entrepreneurial firms is cash, consistent with the findings that early financial 

investments matter in achieving high growth (Cooper et al. 1994) and supports the as-

sumptions of earlier studies on entrepreneurial operations (e.g. Archibald et al. 2002, 

Swinney et al. 2005). However, after establishing a healthy revenue stream, the main 

bottleneck resource becomes time. The next corollary gives insights to when the main 

bottleneck resource switches from money to time. 

Corollary III.2 x* > p* if and only if I > I, where I is the unique cash position satis-

fying the expression 

We note that if the initial seed capital IQ is large enough (i.e. IQ > /), the main 

bottleneck resource will always be time. Moreover, using the implicit function the-

orem, we observe that the bottleneck shift occurs later if K increases > 0 ) , and 

earlier if / increases (57 > 0) when the time investment has decreasing marginal return 

on the revenue ((3 < 1); however, monotonicity is not necessarily guaranteed for other 

parameters (We have § > 0 (3 < a + 1; g > 0 ^ > / > l ; a n d | ^ < 0 o 

KIAJ$ > / I n / ) . We test the robustness of our results to the functional form of the 

production function in §5.1. 

4 Hiring Decision 

The previous section showed that the value of additional time eventually becomes 

greater than the value of addition money, creating a fundamental gap. In this section, 
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we investigate how to lower this disparity by exchanging money against time. Specifi-

cally, when the key constraint is time, the entrepreneur can create more time by hiring, 

thus relieving the bottleneck constraint and increasing profits. We characterize when 

the entrepreneur should hire their first employee and study the sensitivity of this opti-

mal decision to the hiring setup time and setup cost. We assume that the entrepreneur 

can hire only one employee, but relax this assumption in §5.2. 

4.1 Hiring Decision Framework 

For each subsequent period (e.g. month) after hiring, the entrepreneur gains additional 

time in return for paying a wage to the employee. In particular, due to the difference in 

the efficiency between the entrepreneur and the employee in completing tasks, the ad-

ditional time the employee provides is worth only as much as the time the entrepreneur 

would have needed to spend. Thus, we refer to the time spent by the employee in terms 

of that converted into equivalent entrepreneur's time units. We denote the wage (vari-

able cost) as w, and the additional time in the entrepreneur's time units as y. 

For entrepreneurial firms, moreover, hiring is a complex and time-consuming task 

which can pose a significant drain on the existing resources (Klaas et al. 2000), and 

interfere with managerial responsibilities that are directly related to revenue production 

(Cook 1999). For example, carefully screening applications and assessing the fit and 

values of candidates and training them require significant upfront investment in time, 

whereas significant upfront cost is incurred to advertise the position (or hire a head 

hunter), accommodate additional office space, computers, and other infrastructures. 

We denote the associated setup cost as SM > 0, and the associated setup time as S j > 

0. The firm incurs setup cost and setup time only during the hiring period, and the 

exchange between time and money comes into effect each period only after the hiring 
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period. 

Let the available money and available time in the beginning of period s be denoted 

Is and Js = J respectively, and suppose the entrepreneur decides to hire in period s. 

Then, due to the setup cost and setup time incurred, the available money and available 

time to invest in revenue generating activity will decrease from Is to Is — SM and from 

J to J — ST respectively. Therefore, the revenue earned in period 5 when hiring takes 

place is no greater than the revenue earned if hiring did not take place. In the subse-

quent periods t following the hiring period (i.e. t 6 {s + I,... ,N}), the entrepreneur's 

available time increases from J to J+y, and before each period ends, the entrepreneur 

pays the employee a constant wage of w, reducing the available capital in the beginning 

of period t + 1 from It+\ to It+1 — w. 

The following corollary modifies the optimal allocations {Tt*} and {M*} and the 

resulting shadow values {x*} and {/J*} of Proposition III.l, to accommodate the hiring 

in period s. 

Corollary III.3 

min{It,Mf}, t < s, 

M* = l m i n { I s - S M , M g } , t = s, , T; 

m i n { I t , M h } , t > s. 

J, t <s, 

* = J-ST, t = s 

J + y, t>s. 

where, 
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t<s: / ( / ) = 

t = s: g(I) 

f > 5 : h{l) = 

(III. 6) 

Suppose hiring takes place. Then, the firm goes through three consecutive phases: 

(i) production without an employee, (ii) production during the hiring period, and (iii) 

production with the employee. Starting with an initial cash position I, the optimal 

cash positions at the beginning of the next period when following the prescriptions of 

Corollary III.3 are denoted as / ( / ) , g(I), and h(I), following the sequence / —> g —> h: 

5 KIajV if I<Mf 

I + d(KMjjV - Mf) otherwise, 

5K(I-SM)a(J-ST)V if I~SM< 

I-SM + 5(KMf(J-ST)V-Mg) otherwise, 

dKIa(J + y)V-w if KMh 

I + 8(KM^(J + y)^ -Mh-w) otherwise. 

The functions f , g, h are continuously differentiable with respect to I because their 

derivative with respect to / at Mf, Mg, and Mf, are 1. Note that for any hiring decision, 

the available cash I will change in each period according to the sequence / —• g ^ h . 

Using these functional forms to represent revenue earned, we next examine when the 

entrepreneurs should hire their first employee, and the impact on the shadow values. 

In order to model the resource drain of hiring, we assume that the combination 

of setup cost and setup time is sufficiently high such that the profit earned during the 

hiring period is nonpositive, formally addressed next. 

frn.7) 

(III. 8) 

Assumption III.2 (ST,SM) e {{ST,SM)\SM > KM*{J - S T f -Mg) 

We note that while the Assumption III.2 characterizes a sufficient condition that sim-

plifies our analysis, it is not a necessary condition for the results of our paper. 
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4.2 Optimal Timing of Hiring 

When is the optimal time s* in which to hire the employee? If the entrepreneur hires too 

early, the resource drain caused by hiring may curb the necessary growth momentum 

the firm needs to maximize the objective SNIN- On the other hand, the entrepreneur 

should not hire too late when her time is valuable and when the benefit of time gained 

from hiring cannot be offset the time and money invested for hiring. An example 

illustrating the cash position over time as a result of the hiring decisions is shown in 

Figure III.2. 

Figure III.2: Illustration of cash position dynamics as a result of hiring, with parame-

ters K= 1.1,7 = 20, a = .9, p = .3,8 = .95, SM = 400, ST = 15, y= 10,w = 30. 

In order to formally characterize the associated tradeoffs in hiring, and to gain 

insights into the optimal hiring period 5* and how it is influenced by the hiring pa-

rameters (SM, ST, w, _y), we formulate the following dynamic program representing an 

optimal stopping time problem. We point out that a firm with 1 employee eventually 

overtakes the firm with no employees as long as the period left N — t is large enough, 

characterizing the necessity for hiring. Thus, in order to focus on the timing decision, 

we will assume that the remaining period is large enough so that the break-even point 

114 



www.manaraa.com

is always reached after hiring. 

Let k denote the period-to-go, and the two dimensional variable ( / / , / ) denote the 

state in each period, where H e {0,1} denote whether or not an employee has been 

hired, and / represents the available cash. For k = 1 , . . . , N, we thus have: 

Vk(0,/) = max{8V*_i(0,/(/)), 8V*-i( l ,g( /))}, V 0 ( 0 , / ) = / , (III.9) 

Vk(l,I) = 8V*_i(l ,/i(/)), Vb(l , / )=/ .(HI.10) 

Because there is no further hiring decision to be made once an employee has been 

hired, the key decision is to determine when V^_i(0,/(/)) < Vk-i(l,g(I)). For this, 

we use the interchange argument in the sequence of functions /—>•••—»/—>•£—»• 

h —> •••—»• /i to determine where the function g should be in the sequence. We next 

present two lemmas which are necessary for applying the interchange argument. 

Lemma III.2 Vk(l,/) is increasing in I, V k. 

Lemma III.3 Suppose Assumption III.2 holds. Then, g(f(I)) — h(g(I)) is strictly de-

creasing and continuously differentiable in I. 

Again, we note that Assumption III.2 is not a necessary condition for Lemma III.3. 

For example, the condition ST = SM = 0 would satisfy Lemma III.3. 

We now state the following theorem, which characterizes the optimal hiring deci-

sion. 

Theorem III.2 Let I* be the unique threshold capital for which g(f(I*)) —h(g(I*)). 

Then 

V*_i(0 , / ( / ) )<V*_i ( l ,g ( / ) ) ifandonlyif />/*. 
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The Theorem characterizes the threshold structure of the optimal policy, namely 

that it is optimal to hire if and only if the available cash I is above a threshold I* (i.e. 

I > I*). The following corollary follows from Theorem III.2 directly. 

Corollary III.4 

(i) Without setup cost or setup time, i.e. if ST = SM = 0, it is optimal to hire if and only 

ifh(I) > / ( / ) . 

(ii) If g ( f ( M f ) ) < h(g(Mf)), then it is optimal to hire during the bootstrapping phase, 

i.e. s* < N*. 

The first part of Corollary III.4 shows that concerning the hiring of employees with 

no significant setup cost or setup time (i.e. commodity labor), the optimal time to hire 

is when the revenue earned in the current period is higher with the help than without 

the help. That is, a one-step look ahead policy is optimal in this case. The second part 

establishes a sufficient condition under which the optimal period to hire is during the 

bootstrapping phase (i.e. when p* > 0). 

Hiring, which trades off time and money, need not necessarily occur when time is 

more valuable than money. For example, take SM — ST = 0 for simplicity and consider 

the tradeoff between y and w. By Corollary III.4(i), we have that I* is when h(I) = / ( / ) , 

or 

Thus, as w —> 0 or y —> I* can be made arbitrarily small, i.e. small enough such that 

a KJ$ p/^/*)01 , „ * 

Hence, it may be optimal to hire even if money is more valuable than time. In other 

words, if additional time can be earned with minimal setup time and setup and variable 
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costs (e.g. via process improvement), the prevailing shadow values is not relevant to 

the timing decision. 

Under less extreme values of w and y, hiring takes place when additional time is 

more valuable than additional money. In general, the gap between the shadow values of 

time and money shadow values decreases after hiring as a result of trading off of money 

against time. How does hiring in the optimal period s* influence the shadow values of 

money and time? The next proposition shows the implication to the difference between 

the shadow values of time and money after hiring. 

Proposition III.2 Let %s
t, f / t denote the shadow prices of time and money respectively 

in period t if the entrepreneur hires in period s. Let s* be the optimal hiring period. 

Then, for any 5 ^ s*, xf > xs
t and pf < f / t for all t > max]^*, 5}. 

The proposition states a somewhat counter-intuitive result, namely that when hir-

ing is made at the optimal time, the difference between the shadow values x* — p* is 

maximized in every subsequent period. That is, given that hiring takes place at some 

point, the optimal timing of the hiring decision is such that the bottleneck nature of 

time, relative to money, is the strongest. The intuition is the following. As a result 

of optimal hiring, more money is accumulated during the growth phase than hiring in 

any other period, and the terminal value of the firm is maximized. Consequently, the 

shadow value of money is lower under the optimal hiring decision as there is more 

money available, and with access to more money, the shadow price of time becomes 

in contrast more valuable. 

Gifford (1992) discusses the role that entrepreneur's limited attention plays in the 

evolving organizational structure. In particular, she argues that as the entrepreneurs 

free up more time by delegating current operations to managers, they can focus more 
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attention on growth related product innovations to grow the firm. As a result how-

ever, the newly created demand for the entrepreneur's attention may be overwhelming, 

which makes them delegate further entrepreneurial responsibilities. While Proposi-

tion III.2 does not address whether or not the entrepreneurs should hire, given that the 

hiring is necessary it shows that the optimal timing of hiring is when the entrepreneur 

would feel the most overwhelmed by the newly created demand for the entrepreneur's 

time. An example comparing the shadow values for optimal timing and suboptimal 

timing is shown in Figure III. 3. 

Figure III.3: The shadow values of time and money as a function of the hiring times. 

The optimal timing results in the largest eventual % and the smallest /u. Parameters: 

K= 1.1,/o = 100, J = 20, a = .9, p = .3,5 = .95, N = 18, SM = 400, ST = 10 ,y= 10, 

w = 30. 

4.3 Comparative Statics 

In this section, we examine the comparative statics of the optimal cash threshold I*. 

The next proposition examines how the hiring threshold I* changes with respect to 

parameters SM,Sr,w,y, generating insights to the optimal timing of the hiring. 
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Proposition III.3 

(0 
dr 
dy 

ar 
dw 

d/* ("0 

dI* 
dSr (iv) £ > 0 

<0 \/y (expedite hiring), 

> 0 Vw (delay hiring), 

VSM (delay hiring), 

if and only if ST > J — %* (delay/expedite hiring), 

in which, 

r = 

{KI"JFI-SM)A J 

a2Pig(/*-5M)a2(./+y)P>\ ^ 
(5a)T=s J l-a 

f <xmi*-SM)a\pa 

V (Sa/s:)!^ 

0 

l - a 
- a + a z ) 

if I* < /(/*) < Mg + Siw, g(I*)<Mh, 

if I* < Mg + Sm </(/*), g(r)<Mh, 

if I* < Mg + SM < /(/*), g(n>Mh) 

else. 

The next corollary gives insight to how the hiring threshold changes with respect 

to J for a particular case of ST = SM = 0. 

Corollary 111.5 Suppose ST = SM = 0. Then, > 0 if and only if\3 < 1. 

The human resources literature documents the difficulty of hiring and its related 

resource drain to the firm (Tansky and Heneman 2006). Our model takes the hiring-

associated costs as exogenous parameters and prescribes how the entrepreneur can 

minimize the hiring-related resource drain and lost growth momentum by controlling 

the timing of the hiring. 

In particular, the proposition prescribes that if the potential employee demands 

higher wages or the upfront cost of hiring increases, hiring should be delayed to con-
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serve the growth momentum by not diverting valuable cash away from revenue gener-

ation activities. On the other hand, if the additional time created due to the help of the 

employee increases, hiring should be expedited as the additional time can be used to 

fuel growth. However, if the upfront time associated with hiring (e.g. screening, train-

ing) is sufficiently large (small), the proposition prescribes delay (expedite) of hiring 

if the upfront time increases further. 

The setup time J — %* depicts the threshold where the tradeoff between the need to 

preserve the growth momentum and the need to hire before the shadow value of time 

becomes too large intersect. If the setup time were sufficiently large (ST > J — %*), 

hiring slows the growth momentum, and thus if the setup time were to increase further, 

the momentum would be curbed even more. Thus, the hiring should be delayed. How-

ever, if the setup time were sufficiently small (ST <• / — %*), the minor curbing of the 

growth momentum is offset by the increase in the growth rate over the remaining time 

horizon. Thus, if the setup time were to increase, the effect on the growth momentum 

can be offset by hiring earlier to reap the benefit of the accelerated growth for longer 

remaining time horizon. 

To better understand the nonmonotonicity of the optimal hiring threshold I* with 

respect to setup time ST, we examine the iso-curves for the set of values of {(SM,ST)} 

and {(y,Sr)} that leads to the same hiring threshold capital I*. The contours for the 

setup costs and variable costs are shown in Figure III.4. In the figure on the left hand 

side, we see that the iso curves are increasing in ST initially and starts to decrease after 

a threshold point J — %*. In other words, for a constant SM, the hiring threshold I* 

decreases (expedite hiring) as long as ST <J — %* and starts increasing (delay hiring) 

for ST > J — X*• As 5M increases, I* increases, consistent with Proposition III.3(iii). 

In the figure on the right hand side, note that as y increases, the I* decreases (expedite 
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hiring). However, we see that for a constant y, an increase in ST initially decreases /* 

(expedite hiring), but after ST ~ 6, the /* is increasing in ST-

Figure III.4: Illustration of iso-curves. In the left figure 

(K = 1.1,6 = .95,a = .9,(3 = .3,N = 18,y = 10,W = 30), we illustrate the 

contours for setup costs. The north represents higher values of /*, i.e. de-

lay hiring. In the right figure, we illustrate the contours for the variable costs 

(K = 1 . 1 , 6 = 1,/ = 3.7 = 20 , a = .9,0 = .3,N = 18,SM = 400,vv = 10). The south 

represents a higher value of /*, i.e. delay hiring. 

The difference in sensitivity of the hiring threshold /* with respect to the setup time 

ST and setup cost SM highlights the importance of differentiating the two concepts 

for hiring decisions in the entrepreneurial contexts. In particular, setup time is often 

converted into setup costs in staffing models. For example, Gans and Zhou (2002) 

suggest that the fixed hiring cost "typically includes advertising for, interviewing, and 

testing of job applicants when appropriate. It may also include one-time training costs 

that are independent of wages." In our context, if the setup time were treated as setup 

cost, then an increase in setup time would always imply that hiring should always be 

delayed, which is precisely contrary to the prescription of our model. 
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5 Extensions 

In this section, we extend our model to illustrate the robustness of our results. First, 

we generalize the production function to the constant-elasticity-of-substitution (CES) 

production function, of which the Cobb-Douglas production function is a special case 

and demonstrate that the results of Theorem III. 1 continue to hold. We then extend 

our model to incorporate hiring of multiple employees, where the order of the given 

employees are predetermined, and identify the moderate conditions under which the 

results of Theorem III.2 as well as the comparative statics of the hiring parameters 

continue to hold. 

5.1 Generalization to CES Production Function 

The constant-elasticity-of-substitution (CES) production function (Arrow et al. 1961) 

and the resulting profit function is given by the following respective expressions: 

R(M, T) — K (pTq + (1 - p)Mq) \ , n ( M , T) = K (pTq + (1 - p)Mq)« - Af, 

where p = and r = a+13. 

Following the definitions of Arrow et al. (1961), we will refer to K as the efficiency 

parameter, p as the distribution parameter, and q as the substitution parameter. When 

r = 1, the revenue function converges to the Leontieff function (perfect complement), 

i.e. Kmm{M. T} when q —> — to the Cobb-Douglas function (complement) KMaT$ 

when q —> 0; and to a linear function (perfect substitute) when q = 1. It is easily verified 

that the revenue R(q) (and thus 11(g)) is increasing in q G ( — 1 ] (as money and time 

becomes more substitutable). The following Corollary generalizes the optimal shadow 

values {tf } and {x*}. 
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Corollary III.6 The expressions for p* and x* can be generalized to CES functions as 

follows: 

Vt 

%r = 

^ dR(Mijk*)\ fdn(M;,T;) 

^ i i i ^ ) V m 
N-1 dR(MlT*)\ fdn(M*.Tt*) 

1 J J i ) v w 

The following lemma establishes the sufficient conditions for the concavity of 

R(M, T) with respect to M. 

Lemma III.4 R(M, T) is concave in M if 

(i) a + P < 1, Vq, 

(ii) a + P > l , q = 0 and a < 1 (Cobb-Douglas), 

f / B \ / I 
(iii) a + P > l , q<0andl0> 

(iv) a+P>l, q>0andlu< 

p - ( l - a ) / V a 

p 

p-(l-a)J \ a 

We examine the evolution of shadow values p*(q) and x*(q) over time as the sub-

stitution parameter q e ( — 1 ] increases and show the robustness of Theorem III.l. 

Theorem III.3 As long as R(M, T) remains concave in M, 

* /r* 
Vt+I < V t i 
tf - *t ' 

Thus, the shadow value of time T* becomes greater than the shadow value of money 
* 

pt. 
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In particular, the shadow value of money remains decreasing as described in The-

orem III. 1 but the shadow value of time may not necessarily increase. In fact as the 

substitutability between time and money q increases, the dynamic evolution of the 

shadow value of time resembles more of that of the shadow value of money. For ex-

ample, when q = 1, the shadow value of time decreases like that of money. This is 

because the difference between time and money disappears and time behaves as if it 

gets stored like money because it can be saved into the next period by being converted 

into money. In other words, time can substitute for money, but money cannot substitute 

for time. 

Nevertheless, when the shadow value of time decreases, it does so slower than the 

shadow value of money, thus ultimately becoming greater than that of money. Thus, 

the shift in bottleneck from money to time characterized by Theorem III. 1 is preserved 

for when the returns to scale are decreasing (Lemma III.4(i)), or under specific condi-

tions on the initial and final wealth (Lemma III.4(iii),(iv)). 

5.2 Multiple Hiring 

As the entrepreneurial firm continues to grow, the gap between the shadow values be-

tween time and money increases, making it necessary to hire additional employees. In 

this section, we examine the robustness of our results to multiple hiring and provide 

insights to the entrepreneurs' multiple hiring decisions when the sequence of employ-

ees are predetermined. To reflect the resource constraints of the entrepreneurial firms, 

we restrict the hiring in each period to one employee. 

Let yi and W( denote the time gained and the wage expended by hiring the I t h 

employee. Thus, after hiring the £th employee, the available time increases from J + 
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Y?j=\yj to i + Ej=iy./- Furthermore, let SMt and STe denote the hiring setup cost and 

setup time respectively of the £th employee. 

Following the notations of §4.1, we will denote the optimal cash position in the 

ensuing period as a result of optimal time and money investments with i employees 

as hg(I) (with ho = / ) ; and that during the hiring period in which you hire the £th 

employee by ge(I), which are respectively shown next. 

he(I) = 

ge(I) 

KIa(J + ^ J = ] y j f - Z ( j W j if I<Mh( 

I + {KM* (./ + ZU YJF ~ Mhe ~ LU w J ) otherwise, 

I-S£
m + (KM*(J + l?r\ y j - s f )P - M g e ) otherwise, • 

! _ _1_ 
l - a / t \ l-a / t-1 

where Mh( = I SaK(J + £ , Mgt = f daK(J+ £ y j - S e
T f 

Moreover, we assume that each setup cost and setup time for hiring the £th em-

ployee satisfy the Assumption III.2, formally stated next: 

Assumption III.3 

{STt,SMt) e {{STe,SMe)\SMe>KMfe(J-ST^-Mge}, W e {0,1, . . . ,£}. 

The DP formulation of (III.9)-(III.10) can be extended to multiple hiring by ex-

panding the state He {0,1} to H e {0,1,2, . . . ,£}, where 1 denote the maximum 

number of employees to hire. Again, we point out that a firm with (•£+ 1) employ-

ees eventually overtakes the firm with £ employees as long as the remaining periods 

N — tis long enough. In order to focus on the timing decision, as done in §4.2, we will 

assume that the remaining period is sufficiently large so that the break-even point is 
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reached after hiring the (£+ \ ) th employee. We have: 

Vk(£,I) = max { i(£,hg (/)), SVk_{(£+l (/))}, V0 (£,I)=I, V£ < 1, 

Vk(£,I) = 5 Vk-i&hzV)), V0(£,I)=I. 

Analogous to §4.2, for each £, Vk(£,I) is increasing in I for all k (Lemma III.2); and 

the expression gi(hg(I)) — h?+ \ (ge(I)) is strictly decreasing and continuously differen-

tiable in I if Assumption III. 3 holds (Lemma III. 3). Thus, the J independent threshold 

capital levels { I f } such that ge(hg(IJ)) = h(:+] (gfl^)), i.e. for a firm which currently 

has available time J + jfj=\yj employees) and decides to hire exactly one more 

employee (the (£+ \ ) th employee), are well defined. 

The thresholds I f s need not be necessarily increasing in £. For example, if Sm = 

ST = 0, then by Corollary III.5, we have that < y£ whenever (3 > 1 because the 

available time with £ + 1 employees is greater than that with £ employees. If 3£,I%+1 < 

it may be optimal to hire the I t h employee before the period it would have been 

optimal to hire her if she were the last employee (i.e. hire when I < / | ) , so as to avoid 

further delaying the hiring of the (£ + \ ) th employee. 

In practice however, the hiring sequence is such that the setup costs {SMt} and 

the variable cost {wp} is increasing in £. This is because the task that entrepreneurs 

need to delegate evolves from low-skilled to sophisticated. For example, entrepreneurs 

typically first hire undergraduates to delegate tasks such as programming or internet 

research, then MBA's to delegate tasks related to marketing or accounting, before 

searching for senior level VPs to delegate tasks related to strategic growth. By Propo-

sition III.3, if the sequences {SMe} and {wg} were sufficiently increasing, the sequence 

of thresholds would be increasing. Thus, we assume the following: 

Assumption III.4 The sequence of employee parameters {(SMe,STi: ,wi,yp)} is such 
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that /j* < 7| < • • • < I j . 

We have the following theorem. 

Then, it is optimal to hire the 

if Kit 

otherwise 

The theorem states that if the employee hiring is sequenced such that the indepen-

dent thresholds { / | } are increasing, it is optimal for the entrepreneur to employ the 

threshold policy for hiring each employee. In other words, it is optimal to hire the £th 

employee without any regards to future hiring decisions. In such case, because each 

hiring decision depends only on the thresholds 's, the comparative statics derived in 

Proposition III.3 hold for each hiring decision. 

Examples of optimal hiring for the two cases (when Assumption III.4 does not 

hold and when it does) are illustrated in Figure III.5. There are two employees A 

( (S M , S T , y ,w ) = (200,15,15,10)) and B ((SM,ST,y,w) = (400,19,5,20)). On the left 

hand side, the predetermined sequence of hiring is B A, which gives the indepen-

dent hiring thresholds of /* = 1442 and — 538. In such case, we see that the first 

employee is hired before the cash position is above the independent threshold /j* (in 

period 6), and the second employee is not hired until period 7 even though the thresh-

old level has been surpassed in period 3. On the right hand side, the predetermined 

sequence of hiring is A —> B, which gives increasing independent hiring thresholds of 

1\ = 456 and I2 = 1953. Thus, we observe that each employee is hired as soon as the 

cash position exceeds the respective threshold levels (in period 3 and in period 8). 

Theorem III.4 Suppose Assumptions III. 3 & III.4 hold. 

Ith employee if and only if I > It. In other words, 

vk(£,i) 
&Vk-i(£Ml)) 

I bvk^(£+l,ge(I)) 
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Figure III. 5: Evolution of cash position under optimal timing of 

hiring under two different sequences. Parameters of the firm: 

K = 1.1,/ = 300,7 = 2 0 , a = .9,(3 = .3,5 = .99,N = 11. Two employees: A 

(SmA = 200 ,S T A = 15,YA = 15,w^ = 10) and B (SmB = 4 0 0 , S t A = 19 , y B = 5,WA= 20). 

The left hand side hires B —A (/* = 1442 and = 538); the right hand side hires 

A - + B (/* = 456 and q = 1953). 

6 Concluding Remarks 

In this paper, we present an entrepreneurial firm's production function and examine 

how the complementary inputs of time and money interact as the firm grows. We now 

summarize our major findings. 

First, during the bootstrapping phase, the shadow value of time is increasing whereas 

the shadow value of money is decreasing, ultimately making time the key bottleneck 

resource. This is driven by the physical difference between time and money as a re-

source, and the structure of the production function. In contrast to money, which can 

be reinvested into the firm, time is physically limited each period. Thus, the available 

money increases but the available time remains constant during growth, making time 
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relatively more scarce than money in subsequent periods. Secondly, because both time 

and money are required to generate revenue (complementary resources), the relative 

value of time is greater when there is more available money to invest. Thus, the value 

of additional time increases as the supply of money increases. We show that this shift 

in the bottleneck from money to time is robust to the functional form of the production 

function. 

Second, we establish that there is a unique cash level threshold above which it is 

optimal to hire. We also establish that under certain sequence of hiring, this thresholds-

based policy remains optimal for multiple hiring decisions. This hiring threshold is 

non-monotonic in the hiring setup time due to the tradeoff between the need to pre-

serve the growth momentum and the need to hire before the shadow value of time 

becomes large. In particular, if the setup time is above a certain threshold, hiring curbs 

the growth momentum and thus if the setup time were to increase further, the model 

prescribes delaying the hiring. On the other hand, if the setup time is below the thresh-

old, the minor curbing of the growth momentum is offset by the increased growth over 

the remaining time horizon. Thus, if the setup time is small but were to increase, the 

model prescribes expediting hiring to accelerate growth and reap the benefits further. 

Third, we find that when the entrepreneur hires at the optimal time, the gap between 

the shadow values of time and money is ultimately maximized. This is because, as a 

result of optimal hiring, more money is accumulated during the growth phase than 

hiring in any other period. Consequently, the shadow value of money is the lowest 

because there is more money available, and with access to more money, the shadow 

price of time becomes in contrast more valuable. 

Finally, our model points out the importance of differentiating setup time and setup 

cost when making hiring decisions. Although staffing models for large firms often ag-
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gregate the setup time into setup cost because dedicated human resources department 

exist and the time can be easily converted into their hourly wages, there exists a fun-

damental difference between hiring setup time and cost in an entrepreneurial context. 

This paper does ignore some important factors relevant to hiring in the entrepreneurial 

context. For instance, the employees and their parameters are assumed to be exoge-

nous, whereas they could be endogenously determined by the amount of setup time or 

setup cost the entrepreneur invests. Treating the investment of setup time and setup 

costs as decision variables in this regards can be an interesting extension. Moreover 

the time gained by hiring an employee is assumed to be known and independent of the 

existence of other employees. It would be worthwhile to incorporate uncertainty into 

the employee's contribution or model the turnover rate of employees and examine how 

it affects the entrepreneur's hiring decision. Furthermore, it would be valuable to gain 

insights into the optimal hiring sequence of the employees, and how it is influenced 

by the fit between employees. Generalization of some of our results to address such 

issues, although challenging, would be worthwhile. 
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Appendix 

Proof of Proposition III.l We first construct the optimal primal solution (M*,T*). 

Because the constraints on the money (III.3) is increasing in the profit II,, it is optimal 

to invest (M t ,T t ) that will maximize the single period profit Y\t(Mt,Tt). Since 

A n t{Mt,Tt) = = W h and 

t t Tt 

An(Mr,7) = = * Mt < M f , 

we have M* = m i n { I t , M f } , and T* = J, where Mf = (SaKJP) . 

The constraint gradient at the vector {(M*,T*)} is linearly independent - and 

hence regular - because for each constraint (III.3) and (III.4), the new variable Mt 

and Tt are introduced. Therefore, a unique Lagrange multiplier vector exists (Proposi-

tion 3.3.1, Bertsekas 1999), where the gradient of the Lagrangian is zero. Moreover, at 

this point, the complementary slackness holds because T* = J Vr, xt > 0 Vf, and > 0 

if Mt=It< Mf and = 0 if Mt = Mf > It. 

We find the expressions for the Lagrange multipliers {JJ*,X*}. For simplicity, we 

will ignore the superscript *. From (III.2)—(III.5), we have the following Lagrangian: 

L = ^ V / S KM?T?-Mt) 
t=o L J +Sw ((ff̂ lG)"'!8 -̂̂ }-̂ )+!'*<'-r<>-

We will proceed in three steps: (i) derive the expression for xt, (ii) derive the expression 

for jj-i, then (iii) derive the expression for the coefficient that appears in both xt and /jt. 
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i) First, taking the derivative of L with respect to Tt, we have, 

- * = ( » " ' • + E + 1 ( f * < 4 ( m . i i ) 

ii) Next, taking the derivative of L with respect to Mt we have, 

8L (aKMfT? \ ( » /1\*"' \ f a K M f T ? \ n 

\k=t+\ 

• - KI 
iii) Finally, we show the following equality: 

f a K(Mtr(T*f 
E - N ( ! 

\ k=t+\ / *=r+l \ 

We do so by induction. This true for t = ./V because 

M* 

(^(r-L -
Now suppose, 

E ( i ) « » N fc=f+2 V^/ / fc=r+2 \ M k 

Then, we have 

N / i \ k-t 

8 ' - ' + E ( I ) « 
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- "-'t-K'-jUir-

®(-i.(ir 
fi/ kiiiK Mk \ Mt+l 

'aKM^T^ 
Mt+i 

SH/rU 1 t+1 

A f ^ M l ^ ' 
k=t+1 v Mk = n ^ 

where the second equality is due to equation (III. 12) and second to last equality is due 

to equation (III. 13). • 

Proof of Lemma III.l Before It < Mf = (jiaKJ^ '~a, the optimal decision is to put 

all the earned revenue back into the business. First, we have that 

71 = ( i f ; 7 ^ ) ' a n d ^ = ( T f ; C i - / p ) , V r = o,. . . )yv. 

Elaborating, we have, 

/ / f \ \ ru. / / A \ d \ „JV 
1 + r, )n - c x i i -a " * 

I°"N < Mf 
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^ a ^ l o g / ^ - a ^ l o g ^ y ^ / P ) < l o g a 

a^ log ( „ 1 I < loga 

N < log 

( \ 
lQ8( j ) 

loga 

Proof of Corollary III.l Because the objective function (III.2) and the constraints 

(III.3), (III.4) are continuously differentiable in {(MT,TT)}, the Hessian of Lagrangian 

(restricted to the vector space orthogonal to the constraint gradients at {(M;,T;)}) 

evaluated at {(M*,T*,/U*,X*)} is positive semidefinite (Proposition 3.3.1, Bertsekas 

1999). Furthermore, since this Hessian has linearly independent column vectors span-

ning this restricted vector space (i.e. full rank), all the associated eigenvalues are 

strictly positive and hence the Hessian is strictly positive definite. Moreover, since 

strict complementary slackness holds (see Proof of Proposition III.l), the sensitivity 

result follows (Proposition 3.3.3, Bertsekas 1999). • 

Proof of Theorem III.l For simplicity of notations, we omit the superscript *. 

i) We have, 

, f a K M ^ T ^ - l ) 
= 6 - -t — ^ • X f + 1 " J < 8 < 1, Vr. 

* (AKMF^T^ (AKM?~LT?-\ 
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This inequality holds since, 

> 0 ^ a K M ? - l T ? > 1, 
dMt ' ~ 1 ~ 

where strict inequality holds if lt < Mf = (haKJ^ 1 " since M* = lt and equality 

holds if l t > Mf since M* = M f . Furthermore, since II, is strictly concave increasing 

for M, < Mf, n'(Mi) > n'(M2) > 0 for Mi < M2 and Mt+X > Mt. If It > M f , n'(M) = 
0 and the inequality becomes equality. 

ii) For the ratios of x's, we have 

Xr+l _ \ T,+l J _ 1 

aKM?+lTf \ f^KMUl'X a KM?JP ' 
Mt+1 M T, 

given that Tt+\ = J. For all / < AT - 1 such that It+i < M f , J J ^ = 1, and we have 

^ = ^ > 1 \/t, i.e. the sequence {x,} is exponentially increasing in t. 

For t > N* such that Mf <lt, we have Jjj^ijp = ^ S j p = 5a. Thus, we have 

S±i = i ( 8 a ) = 5 < l . 

iii) For t < N* — 1, since { x j is increasing in t, it is clear that xt—/ut is increasing. 

Moreover, for a\\t >N*,pt =0 and xf > 0, and thus xt > • 

Proof of Corollary III.2 Note that 

an an 

Elaborating the expression, we have 

an 
dM h 1 DT IUJ J 1 1 \h J ) 

We have our expression after simple algebra. Since by Theorem III. 1, there is a unique 

crossing point between the sequences {x*} and if this condition holds, i.e. x, > 

thenx* >/j* \ft. • 
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Proof of Corollary III.3 Same structure as the proof of Proposition III. 1 with changes 

to constraints (III.3) and (III.4) during and after the hiring period. • 

Proof of Lemma III.2. We prove by induction. It is clear that at t = 0, Vo(l,/) = / 

is increasing in I. Now suppose that V (_i(l , / ) is increasing in I, i.e., V,_i(l , / i) > 

V r_i(l , /2) , V/i > h. This is equivalent to Vt(l,h~l(h)) > Vt(l,h~l (/2)). Because 

h(I) is strictly increasing in I and positive, h~~l(I) is also strictly increasing in / and 

spans all positive real numbers. • 

Proof of Lemma III.3 We have 

g ( / ) - m i n { M g + 5 M , / } < n g = max {KMA(J-STF - M - S M } < 0 
M<I-SM 

where the first inequality is by definition and the second inequality is due to Assump-

tion III.2. Thus, g(I) < min{M g + SM,I} < I. Taking the derivative of g(f(I)) -

h(g(I)) with respect to I, we have 

c § m ) - K g m ' = g'm)-f(i)-h'(g(i))-g'(i) 

< g'(m)-h'(i)-h'(g(i))g'(i) 

< gf(i)h'(i)-h'(g(i))g'(i) 

< 0, 

where the first strict inequality is because f < h! because y > 0, the second inequality 

is because / ( / ) > I because of Assumption III.l, and the final inequality is because 

*(/) < • 

Proof of Theorem III.2. By Lemma III.2, Vt{\,*(/(/))) > Vt(l,h(g(I))), if and only 

if § ( / ( / ) ) > h(g(I)). Because all the previous periods prior to and subsequent to hiring 

have identical functional forms, we use the interchange argument (§4.5, Bertsekas 
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2000). Since g ( f ( I ) ) > % ( / ) ) = 0 for / = SM, g(f(I)) - %(/)) = Ilf - Tlh < 0 for 

large / , and because g(f(I)) — h(g(I)) is decreasing in I by Lemma III.3, there exists 

a unique I* for which it is optimal to hire if g ( / ( / ) ) < h(g(I)). • 

Proof of Corollary III.4. 

(i) By Theorem 111.2, g(I) = / ( / ) implies that it is optimal to hire when / ( / ( / ) ) < 

*( / ( / ) ) o r / ( / ) < * ( / ) • 

(ii) Since g ( f ( I ) ) — h(g(I)) is decreasing in /, by definition of /*, 

g ( f ( M f ) ) — h(g(Mf)) < 0 if and only \fI*<Mf. 

• 
Proof of Proposition III.2 We let xs

t and /Jt denote the shadow values of time and 

money respectively in period t if you hire in period s, and let s* denote the optimal 

hiring period. We will omit * for notational simplicity. 

First, we show that for all s ^ s*, <uf < ^ Vf > maxjs,.?*}. Note that V/c > 

max{5*,5}, the available cash 4 (and hence the money investment Mk) when hired in 

the optimal period s* is no smaller than when hired in period s ^ s*. Because R(M,J) 

is concave increasing in M with = ^ > 1, the expression 

N n k=t+1 

( aK(M*k)a(Tj>)*\ (aK(M;r(Tt*)V / 

V MT ) \ M* 

is minimized \/t > max-f^s*} when hired in s*. 

Next we show that for all s ^ s * , x f >x s
t Vt> max{5*, 5}. Note that V? > max{s, }, 

T* = (J +y). Moreover, let r f denote the largest period k in which Mk < Mh = 

(See(7 + y))T^«, i.e. the final bootstrapping period, when hired in period s. Because 

Mjt's are the greatest Vk > max{,y*,s} when hired in the optimal period r|s* < r\x. 

We will consider the two exhaustive cases separately: (i) when r|s* = T|s, and (ii) when 

r^* < r^. 
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(i) \/t > max{5,5*}, we have 
» . * y n \ 

N 

< 

J+y ) \ Mt+1 Mns* J 

j+y J • \ Mt+l J 

= J+~y ' 

where the cancelations in the third equality occurs because it is optimal to bootstrap, 

i.e. Mt+2 = KM?+l(J+y)$. If r\s* = r\s, then M^* is greatest when hired in the optimal 

period, and hence the result holds, 

(ii) Now let r\s* < r^. Then, we have 

. KM* (J + yf ^ - ' K M ^ J + yf 
xf = —1 , and — . 
' J+y J+y 

Thus, we will determine whether or not the following holds: 

x; 
ARI -TI ( T]_ I L ^ | > A , 

Mns J \ Mns 

We will use the following two properties: (a) M/, > m a x j M ^ , M ^ } and (b) 

minfM"* } > aM" . The first condition is clear by the definition of r\s. The second 

condition is true because 

^ A / a . Mh _ { a K { J + KMvf{J+y)*>Mh - K { j + y ) p 

= a M " . 
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Thus, we have 

< = c ^ ( ^ L V > c ^ ( « G ) = p U > 1, since a < 1. 
xf \MnsJ \MhJ Kafl'-V J 

Proof of Proposition III.3 Using the implicit function theorem, we examine the sen-

sitivity of I* with respect to the parameters (SM,Sr,y,w)• Denoting A(7) = g(f(I)) -

h(g(I)), we have, 

(III. 14) 
d s « w' B S t d y I F ' W 

Because ^ < 0 V/ (Lemma III.3), the expressions (III. 14) reduces to: 

— > 0 — > 0 ^ — > 0 
dS\j 3Sm ' dSr dSj ' 

a/* 3A ^ dl* 3A ^ 
_ > 0 — > 0, — 
ay ay aw ac 

Note that ^ > 0 means it is optimal to delay the hiring until lt reaches a higher 

amount. Moreover, we introduce the following notations to simplify the proofs: 

nf = KMjfi - Mf, ng(SM,Sr) = KM%(J - Srf-Mg - SM, 

Uh(y, w) = KM%(J + y)V -Mh-w. 

We focus on the first case (i). The cases (ii) and (iii) follow the same logic. We 

will consider three exhaustive cases (Assumption III.l): (a) Mg + SM < I < / ( / ) , (a) 

I < Mg + SM < / ( / ) , (c) / < / ( / ) < Mg +SM- For all three cases, we will first evaluate 

^g(f(I)), evaluate g | -*(*( / ) ) , and show that g | - { * ( / ( / ) ) - h(g(I))} > 0. 

(a) First, * ( / ( / ) ) =f(I)+Ug(SM,ST) i f / ( / ) >Mg+SM. Thus, we have g | ^ ( / ( / ) ) 

- 1 . 
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If / > Mg + SM and g(I) < Mh, h(g(I)) = K(I + Ug(ST,SM))a(J + - w}, and 

hence g^ -h (g ( I ) ) = a / : ( / + n g ( S r , S M ) ) a - 1 ( . / + ;>')f5 x ( - ! ) • Otherwise, if I>Mg + 

SM and g(I) > Mh, h(g(I)) = I+ Ug(ST,SM)+ Uh(y,w), and hence ^h(g{I)) = 0 + 

( - l ) + 0 = - 1 . 

Since aK(I + ng(ST, SM))a~l ( J = £xKxa(J+yf 

that £-{g(f{I)) -h(g(I))} >0. 

> we have 
x=i+ng(sT,sM) 

(b) First, g ( f ( I ) ) =f(I)+Ug(SM,ST) if f(I)>Mg+SM. Thus, we have ^ g ( f ( I ) ) = 

- 1 . 

If / <Mg + SM and g(/) % ( / ) ) = ^ ( / ) ) a ( 7 + 3 ; ) P - w, and hence ^h{g{l)) = 

a /s : (g( / ) ) c t - 1 ( / + y)P x { - a ^ Z - S M ) 0 1 " 1 ^ - ^ ) ^ - Otherwise, if I<Mg + SM and 

g(I)>Mh, h(g(I))=K(I-SM)a(J-ST^ + nh(y,w), and ^h(g(I)) = {-aK(I-

Because aK (I — SM)a~l (J—ST)^ = ^g(x) > 1 ^ -aK{I-SM)a~l{J-
X=I-SM 

S r )P < - 1 , and a K ( g ( I ) r ^ ( J + y)V = j e M * ) ^ ^ w e h a v e a t ^ W ) ) ~ 

Hg(I))} > 0. 

(c) First, i f / ( / ) <M8+Sm, §(/(/)) =K(f(I)-SM)a(J-ST)V, and thus, ^ g ( f ( I ) ) = 

-aK(f(I)-SM)a-l(J-ST)V. 

If I<Mg + SM and g(I) < Mh, % ( / ) ) = K{g(I))a(J + y)t - w, and ^ h ( g ( I ) ) = 

a / s T ^ ^ ^ - ^ Y + ^ P x { - « £ ( / - S M ^ ' V - S T - ) 1 3 } - ° n t h e other hand, if I <Mg + 

SM and g(I) > Mh, h(g(I)) = K(I - SM)a(J ~ ST)V + TIh(y,w), and ^h(g(I)) = 

-a K ( I - S M ) a - l ( J - S T f . 

S i n c e / ( / ) > / , lg(x) < &g(x) , and hence - a K ( f ( I ) - S M ) a - l ( J -a— 11 
x=I-SM 

x=f(I)-SM 
ST)* = -&g{x) c > - & * ( * ) =-OLK(I-SM)a-l(J-ST)V. More 

X=I-SM 
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over, since = | / i ( x ) > 1 , -aK(f(I)-SM)a~l(J > 
x=g{I) 

- a K { I - S m T - \ J - S t ) * x Thus, ^-{g(f(i))-h(g(I))} > 

0. 

Now we focus on case (iv). We will prove for the case when I* < / ( / * ) < M g + SM 

and g(I*) < Mh. The remaining scenarios follow the same logic. 

5 - £ ( / ( / ) ) = ^r{K(KIajt-SM)a(J-ST)V} dSj dSf 

= - w K r j t - s u n j - S T ^ ^ ^ j ^ j g m ) , 

= K(J+>>)p • a(K(I - SM)a(J - S T f ) a ~ l • I - SM)a(J ~ STf~1 

V ) OiK(K(I - SM)a(J - ST)V)a(J+y)V. 
J-ST J 

d 
dST 

{ g m ) - K 8 m > o 

& aK(K(I - SM)a(J - ST)V)a(J + y)V > K(KIafi - SM)a{J - Sr)P 

aK«(I-SMr2(J+yf Qn_a) 

(KI«jV-SM)a [ } 

Proof of Corollary III.5 By Corollary III.4(i), I* is such that hf(I*) = he+l (/*), i.e. 

£ £ t+1 £+1 
KIa(J + I yj? ~ZWJ = Kia(J + E - E wi-

7=1 7=1 7=1 7=1 
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(e+i e ) 

Applying the implicit function theorem, we have that 
8r = dv(i,j)/dj ^ - (J+LUyj)^1} 
dJ 3V(/, J)/BI a K{ (J + yj)V-(J + LU }/a"1 

- P / 

*{(j+Lejt\yj)v-(j+LUy^} I yj)1-* v+zUyj)1-* 

Thus, we have > 0 if and only if P < 1. 

Proof of Lemma III.4. 

R(M,J) = K(pJq + (l-p)Mq)r^ 

R'(M,J) = K ( ^ j (pjq + (1 - p)Mq)r^~l x q(l - p)Mq~1 

R"(M,J) = K ^ j (pJq + (I - p)Miy/l-1 xq(q-l)(l-p)Ml-2 

xq(\-p)Mq~l 

= K ^ j (pJq + ( l - p ) M q y / q - 1 q { l - p ) M ' 1 - 2 

V U )HpJl + (\-p)M«) 

The first term is positive since the q's cancel, and thus we have the expression is con-

142 



www.manaraa.com

cave in M if and only if 

•O' 

(PJ«%P)MP)M«) < 1 ~ q + q (PJ«%P)MP)M«) 

Ca Q) ( ^ \ i _ ( \ 

& (a+$)aMq < $Jq + aMq-q$Jq 

( a + p ~ l)aMq < (1 —q)$Jq 

Clearly, (i) if a + P < 1, then R(M,J) is always concave in M because the left hand 

side is negative. Also (ii) if q = 0 (Cobb Douglas), we have R(M.J) is concave in M 

if a < 1 because 

(iii) If q < 0 and a + P > 1, the left hand side of the inequality is decreasing in M, and 
\ 1 Iq 

(1 ~q) thus the inequality holds and the R(M,J) is concave for all M if y > —^ 

Finally, (iv) if q € (0,1], the left hand side is increasing in M and thus the R(M,J) is 

concave in M for & < ( — ( 1 ~ g ) , N ) • J ~ \^(a+P-i)(f) J 

Proof of Corollary III.6. In the proof of Proposition 1, replace the expression 

a Z M g t l X _ ! w i t h a n ^ n ^ ffiM w i t h M ^ z n , a n d w i t h 

^ a n d results follow. This is true as long as the structure of II(M, T) = 

R(M,T)-M remains. • 
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Proof of Theorem III.3. From the expression of Corollary III.6, we have that 

tf+i _ / 5 H j x;+ 1 _ / 5 U ar;+1 

V 9m; ; \ dr;+l J \ dr; J 

Because FT (M,J) is concave in M, and M*+1 > M*, and because ' > 1, we have 

5m;+1 

< 1 , 

/an(M;+lT/+,)\ 
V J < L 

Note that 

. W ^ i / V dM> J 

( S S ^ S i l ) W + 1 + ( i - f ) W 5 - > 9 ( 1 _ p ) 7 , - i 

- 1 

'pMf+1 + (l-p)J* 
pM? + (l-p)J<i 

One can easily check that if q < 0 or if q > 0, r > q, the expression is greater than 
l i h e n c e s a t i s f y i n g < , < 

satisfying the proposition. Finally, for q > 0, r < q < 1, we can elaborate out the 

expressions for comparison: 

/ a n s e j Q N ^ ^ ( p M ' + f l - p j y i j S - 1 J V « ( I - P V « - ' 

Comparing the second fractions inside the parenthesis for the respective expressions, 

we see that the top one is equal to 1 whereas the bottom one is less than 1. Similarly, 

comparing the first fractions inside the parenthesis for the respective expressions, we 

see that the bottom expression is smaller than the top expression because both numera-

tor and denominator of bottom expression is greater than 0 and the fraction is less than 
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1, and adding 1 to both the numerator and the denominator of the bottom expression 

result in the top expression. Hence, the p* has a smaller half-life than x*. • 

The following Lemma is necessary for the proof of Theorem III.4. 

Lemma III.5 Let s™ denote the optimal period to hire the tth employee, when hiring 

a total of m employees. Then, 5} = s\. 

Proof of Lemma III.5. We prove by contradiction. We will first show that (i) s\ > 5} 

is a contradiction, then show that (ii) s\ < 5} is a contradiction. 

(i) Suppose that 5} < s2 . Then, the capital available before hiring the second employee 

in period s\ can be improved by setting s2 = W i t h increase in the available capital, 

the objective can be maximized, contradicting that s\ is the optimal period to hire the 

first employee. 

(ii) Suppose that 5} > Sj. There are two potential cases: (a) when the first employee 

and the second employee are hired back to back periods (i.e. • • • —• ho • gi —> g2 —• 

hi —> • • •), and (b) when they are not hired back to back. 

(a) We have 

ho —•• ho —> gi —s• hi —i• hi optimal for m = 1, 

ho —> —!• g2 —5" hi —̂• hi optimal for m = 2. 

By the case of m = 1, ho(ho(I)) > I* > ho(I), and by the case of m = 2, gi (ho(I)) > 

However, because by Assumption III.3, n g l < 0, i.e. gi(I) < I. Thus, we have 

I\ > ho (I) > gi(ho(I)) > l\ > I[, which is a contradiction. 
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(b) We have 

ho —i> ho —i• gi —i• h\ —> /ii optimal for m = 1, 

ho —> gi —> hi —> g2 • /12 optimal for m = 2. 

The capital available in period ^ when hiring the second employee can be improved 

by delaying the hiring of the first employee, because hi(gi(ho)) < g\(ho(ho(I))). • 

Proof of Theorem 111.4 The same argument used for proving Lemma III.5 can be used 

to show that = Sj = s\, etc. Then, once the optimal timing of the first employee 

is found, we can start in period s\ and set m — 1 as the new m, and repeat the proof of 

Lemma III.5. We have our result by extending to all m. • 
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